[スポンサーリンク]

一般的な話題

有機アジド(2):爆発性

さて、前回からはじまった特別講義「有機アジド」。なかなかマニアックですが、有機化学系の学生ならば知っておいて欲しい内容です。それでは今回は、もう少し興味を引くような(?)、有機アジドの恐ろしい性質「爆発性」をお話ししましょう。

なぜ爆発する?そして覚えておくこと

アジド化合物(アジ化物)は有機基がついているいないにも関わらず、加熱や衝撃によって爆発する可能性があります。エネルギーを与えられたアジド化合物が窒素を爆発的に発生し、分解するからです。とはいっても一般的になかなか手に入れることができないので、そこはご安心を。合成化学者の方々はもし有機アジドを合成する・利用することがあれば、[覚えてほしいこと・守ってほしいこと]があり、それは以下の通り。

  • アジド化合物の(炭素+酸素)を窒素で割った数(C/N比)を3未満はつくらない

2016-09-22_17-58-55

  • つくるときは炭素6個以上 Rule of six
  • 大抵の有機アジド化合物は180以上で分解する
  • 金属製品は近づけない
  • 基本的に遮光しておく

簡単な例を示します(図1)。例えば、炭素9個のノニルアジドはC/N比が3であり、加熱や過度な光照射下に置かない限り安定です。一方、1-アジドヘキサンは、炭素が6個に窒素が3個。炭素が6個以上というRule of sixにはギリギリはいっていますが、C/N比は2となりアウト。とはいえど、合成できますが、濃縮している段階で爆発する可能性が大いにあります。最後に炭素3つの1-アジドプロパン(C/N比1、炭素3)は、はっきりいってその利用や合成は自殺行為です。

2016-09-22_18-01-07

図1. アルキルアジド。右にいくほど爆発性が高い

アジ化物と有機アジドの爆発性試験

ちなみに爆発性ってどうやって決めてるんでしょう。指標(試験)があるはずです。調べてみると、代表的な爆発性試験は「ハンマー落下試験」(図2「すりつぶし試験」(図3)。名前からわかると思いますが、前者は試料を挟んだスチールシリンダーをハンマーを落とし(叩き)、爆発したらハンマーの重さと落とした高さを記録します。一方のすりつぶし試験はサンプルを置き、一定の力ですりつぶす!両者ともかなりアナログなにおいがします。

では、その結果を少しだけ見てみましょう(図2)。例えば爆発物として認識されているTNT(トリニトロトルエン)は5kgのハンマーを0.3mから落とすと爆発。妥当ですね。ダイナマイトの原料ニトログリセリン0.1kgのハンマーを20cmの高さから落とすだけで爆発するんですね。怖い怖い。ではアジド化合物を見てみると、金属アジ化物であるアジ化鉛(Lead azide)はトリニトロトルエンよりも爆発しやすく、表の下のアジド基たっぷりの化合物はニトログリセリンに匹敵するほどの爆発性を持つことがわかります。

2016-09-22_18-15-12

図2 ハンマー落下試験

続いては、すりつぶし試験。TNTやニトログリセリンは全然反応しない。それに比べて、アジ化物はちゃんと(!?)爆発します。アジ化鉛に至っては、圧倒的なすりつぶしに対する弱さ。今回は金属アジ化物はあまり出てきませんが、遷移金属アジドはほぼ触ってはダメということがわかりますよね。

2016-09-22_18-15-53

図3. すりつぶし試験

こんな有機アジドつくるなよ!

では、本論に戻ります。こいつら、なんとなくやばそうだなというのはわかっていただいたでしょうか?ちゃんとルールに従って使っていればこんないい化合物はないのですが、ルールを守れない人もいるのです。その危険性に潜む「未開拓」の魅力か、はたまたどの程度危険なのか調査したいという科学者の使命か知りませんが、やばいものつくっちゃう人がいるのです。例えば以下の化合物(図4)。これ全部合成された化合物なんですね。普通の感覚を持つ化学者ならば恐ろしくて近寄ることができません

2016-09-22_18-27-56

図4. やばい有機アジドの例

はたまた、わかっちゃいるけど、できちゃったという例もあります(図3)。化合物1のヒドロキシ基をアジドに変えた例です。こんなの工業的スケールでも可能な安全な方法です。と言いたいところですが、爆発しました。さて何故でしょう?考えてみてください。

2016-09-22_18-28-40

図5. 爆発例

さて、答えは溶媒です。DCMと書いていますが、これはジクロロメタン。そう、このジクロロメタン溶媒と次の反応のアジ化ナトリウムが反応したんですね。1つ目の反応終了後、溶媒をしっかり減圧留去したつもりが、少しだけ残っていました。そのおかげでアジ化ナトリウムと反応し、ジアジドメタン(図4右から2つ目の化合物)が生成したのです。これは実際起こった事故で、1を12.6kgスケールで反応をおこなったところ、20Lのエバポとその周辺が木っ端微塵になったといいます

有機アジドでの最近の事故例

詳しくはあまり述べ魔炎が、その他の近年の事故例は以下のとおり。

事故例1: 2014年6月17日 ミネソタ大学

学生が200gのアジ化ナトリウムからトリメチルシリルアジドを合成(Org. Synth. 1970, 50, 107.)していて爆発。ドラフトはボロボロ、被害者の大学院生は腕・脇・鼓膜に怪我。またガラスを除去するために手術となったが命に別条はなかった。文献は学部生でも再現可能な実験を集めたジャーナルで、しっかり注意事項も下記の通り書いてありますが、ちゃんと守らないとこんなことになります。

Caution! This reaction should be conducted behind a safety shield in a fume hood. In the presence of water and certain other proton sources, highly toxic hydrazoic acid may form which also poses an explosion hazard.

2016-09-22_18-30-06

事故例2: 2014年11月17日 京都工芸線維大学

アジドエタノールを合成するために、フラスコで試薬を加熱していたところ、爆発。学生五人が顔などに怪我を負ったが命に別条はなかった。

2016-09-22_18-31-53

これも、作っちゃいけない範囲にはいっている化合物ですね。実験にはリスクがつきものですが、リスクに真正面から立ち向かう必要はないのです。

かんべんしてほしい

と、もう有機アジドを使いたくない!と思っちゃう人もいるかもしれませんが、何度も言いますがちゃんとルールに従って使っていれば大丈夫です。そんなルールなんて知ったことか!リスクなんてクソ食らえ!という”エネルギッシュな”化学者がドイツにいるんです。それが、ミュンヘン大学(LMU)のKlapötke教授。600報以上の論文を執筆している有名無機化学者です。でも写真を見たらわかりますが、化学者の格好じゃないですよね。私ならこれをみたとたん絶対に研究室に所属したくないですが、結構メンバー多いんです。ちなみに、この大学ドイツで一番の大学ですよ。

2016-09-22_18-32-52

彼が出版している書籍がこちら。ちょっと勘弁してほしいなあと思います。

そして彼が作り出した代表作のアジド化合物が以下のとおり。下記の化合物の構造は単結晶X線構造解析でも決定できています。どれだけ爆発させたんだろう?ただ、こんな化合物でもアジドの性質として述べた、本当は直線じゃなく曲がってること、またIRスペクトルも値も正しいですね。はい。

2016-09-22_18-34-20

1,1’Azobis(tetrazole)に火を近づけた動画もあがっていました。少量すぎてちょっとわからないですが、大きな音がでています。

というわけで、今回はアジド化合物の爆発性について述べてみました。次回は「アジド化合物ってどうやってつくるの?」すなわち合成方法を説明したいと思います。

参考文献

  1. Conrow, R. E.; Dean, W. D. Org. Proc. Res. Dev. 2008, 12, 1285. DOI: 10.1021/op8000977
  2. Org. Synth. 197050, 107. DOI: 10.15227/orgsyn.050.0107
  3. Klapötke, T. M.; Piercey, D. G. Inorg Chem 2011, 50, 2732. DOI: 10.1021/ic200071q
  4. Klapötke, T. M.; Martin, F. A.; Stierstorfer, J. Angew. Chem. Int. Ed. 2011, 50, 4227-4229. DOI: 10.1002/anie.201100300

関連リンク

上級有機化学シリーズー有機アジド

関連書籍

The following two tabs change content below.
webmaster

webmaster

Chem-Station代表。早稲田大学理工学術院准教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 科学カレンダー:学会情報に関するお役立ちサイト
  2. 炭素をつなげる王道反応:アルドール反応 (2)
  3. 水素結合水H4O
  4. 個性あるTOC
  5. 2015年ケムステ人気記事ランキング
  6. 2010年人気記事ランキング
  7. 第4回慶應有機化学若手シンポジウム
  8. 論文をグレードアップさせるーMayer Scientific E…

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. カスケード反応で難関天然物をまとめて攻略!
  2. アルゴン Argon 空気中の体積1%を占め、医療用レーザーにも使われる
  3. コバルト触媒でアリル位C(sp3)–H結合を切断し二酸化炭素を組み込む
  4. 大正製薬、女性用の発毛剤「リアップレディ」を来月発売
  5. ピンナ酸の不斉全合成
  6. 化学Webギャラリー@Flickr 【Part1】
  7. シャレット不斉シクロプロパン化 Charette Asymmetric Cyclopropanation
  8. ガレン・スタッキー Galen D. Stucky
  9. 新風を巻き起こそう!ロレアル-ユネスコ女性科学者日本奨励賞2014
  10. フォン・リヒター反応 von Richter Reaction

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界

内容2004年にブレークしたグラフェンは,電子材料はじめさまざまな応用が期待される新素材の担…

高機能な導電性ポリマーの精密合成法の開発

そろそろ100回目が近づいてきました。第97回のスポットライトリサーチ。今回は首都大学東京 理工学研…

ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞のイベントに参加できます!

一週間スウェーデンに滞在し、ノーベル賞受賞者と直接交流するなどの貴重な機会が与えられるセミナーSto…

「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より

「ケムステ海外研究記」の第13回目は、第6回目の志村さんのご紹介で、マックス・プランク量子光学研究所…

岩澤 伸治 Nobuharu Iwasawa

岩澤 伸治 (いわさわ のぶはる、19xx年x月x日-)は、日本の有機化学者である。東京工業大学 教…

NCL用ペプチド合成を簡便化する「MEGAリンカー法」

ワシントン大学・Champak Chatterjeeらは、独自開発した固相担持ユニット「MEGAリン…

Chem-Station Twitter

PAGE TOP