[スポンサーリンク]

化学者のつぶやき

4つの性がある小鳥と超遺伝子

[スポンサーリンク]

スズメに似た野鳥、ノドジロシトドの体色には白色と黄褐色の2 種類があり、ほとんどのつがいは白– 黄褐である。つまり配偶者選びは、雄か雌かだけでなく体色にも左右されるのだ。このような「2 つ目の性染色体」を持つ生物は珍しく、性染色体進化の謎を解く手掛かりをもたらしてくれる。

タイトル、冒頭の説明文およびトップ画像はシュプリンガー・ネイチャーの出版している日本語の科学まとめ雑誌である「Natureダイジェスト」2月号から(画像:Brian E. Kushner/Moment Open/Gettyのクレジットー「4つの性がある小鳥と超遺伝子」より)。

最新サイエンスを日本語で読めるNatureダイジェストから個人的に興味を持った記事をピックアップして紹介しています。過去の記事は「Nature ダイジェストまとめ」を御覧ください。

雄か雌かだけでなく体色にも左右される「配偶者選び」

小鳥の世界にそんなことってあるの?と、化学とも研究とも全く関係ないですが、大変興味深く読めた記事。そんな変わった「配偶者(つがい)選び」を実践している小鳥は、スズメ目ホオジロ科のノドジロシトド。その小鳥の生態を追い続けたのが生態学者Elaina Tuttle教授(インディアナ州立大学)とその夫のRusty Gonser教授(同大学)です。

出典:インディアナ州立大学

実は、Tuttle教授はごく最近癌で他界されており、本記事は、”4つの性”があるように振る舞うこの小鳥の調査と、彼らの人生の物語でした。少しネタバレしてしまいますが、体色という見た目のファクターでもつがいを選んでいるのは、お互いの内面の良い所どり(もっていない遺伝子をもつ相手をみつける)相手を選ぶため。この配偶システムの背景には「超遺伝子」というものが関わっています。これ以上は記事で読んでもらうことしましょう。

グラフェンでスライム状玩具が圧力センサーに!

スライムに似た粘弾性のポリマー材料にグラフェンを混ぜると、ごく微小な圧力変化をも検知できる、優れた圧力センサーに変身させられることが分かった。

よく知られたおもちゃ+最新科学=新素材になったという驚くべきお話です。

アメリカでよくしられている「シリーパティー」というスライムっぽいシリコーン玩具。それに単層グラフェンを混ぜ込んだ、通称「Gパティー」は、微小な圧力を圧倒的な感度で検知できるセンサーになったそうです[1]。例えば、人の脈拍や小さなクモの繊細な足取りまで感知できるとのこと。

シリーパティーで遊ぶ子供

 

この研究を報告したのはダブリン大学の物理学者Jonathan Coleman教授。Coleman研究室では「身近なものを使って科学する」という伝統があるとのこと。2014年にも料理用のミキサーがグラファイトの粉砕に効果的でグラフェンが得られることを報告しています[2]。記事はこの研究の詳細な内容とColeman教授へのインタビューを紹介しています。

記事とは全くの別件ですが、先月にもスタンフォードの研究者が「ゴムでくるくるまわすおもちゃ」(本名がわからない)が超低価格の遠心分離機として使えることを報告していました(下動画)[3]。身近なものを優秀な科学者はいとも簡単に最新科学に変えてしまう。こんな天才的なアイデア勝負の研究を一度はしてみたいなあと思います。

 

The do-it-yourself centrifuge from Nature Biomedical Engineering on Vimeo.

参考文献

  1. Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Möbius, M. E.; Young, R. J.; Coleman, J. N. Science 2016, 354 1257–1260. DOI: 10.1126/science.aag2879
  2. (Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P.; Higgins, T.; Barwich, S.; May, P.; Puczkarski, P.; Ahmed, I.; Moebius, M.; Pettersson, H.; Long, E.; Coelho, J.; O’Brien, S. E.; McGuire, E. K.; Sanchez, B. M.; Duesberg, G. S.; McEvoy, N.; Pennycook, T. J.; Downing, C.; Crossley, A.; Nicolosi, V.; Coleman, J. N. Nature Materials 2014, 13 , 624–630. DOI: 10.1038/nmat3944
  3. Bhamla, M. S.; Benson, B.; Chai, C.; Katsikis, G.; Johri, A.; Prakash, M. Nat. biomed. eng. 2017, 1, 0009. DOI: 10.1038/s41551-016-0009

研究評価にNIH新指標を取り入れる動き

生物医学分野の研究を支援する各国の助成機関で、米国NIHが開発した新しい指標を導入する動きが広がりつつある。

研究成果の影響力は最終的には歴史が証明してくれる。」それは間違いない話だと思いますが、研究には研究費の獲得が必要となります。研究分野が類似したところならば評価は簡単にできるかもしれませんが、異なる研究分野で争う競争的資金の場合は少し難しくなります。

研究者の業績の中枢に当たる「論文の影響力」。これを評価するためにはいくつの指標があるのは皆さんご存知のことでしょう。例えば、論文誌自体の影響力を示すIF(インパクトファクター)、論文の引用数(citation)が一般的ですね。前者の場合は、IFが低い論文に掲載されないと過小評価されるといった恐れがあり、後者の場合は、1000報引用された論文でも実は、研究人口が多い分野で、実は大したことないかもしれない。といった問題です。

それらを解決するためNIHのポートフィリオ分析局が開発したのが、相対比引用率(Relative Citation Ratio: RCR)という指標。分野にとらわれず論文の影響力を数値として吐き出す指標であり、記事ではこのRCRの現状について述べています。このRCRはPubMedに収録されている論文ならば、iCiteというウェブサイトにPMID(パブメドアイディー)を入力することによって、即座に確認することができます。

RCR値を算出してくれるウェブサイトiCite

RCRの中央値は1で、RCRが2ならば、”普通の”2倍の影響力があるといった感じ。下記のRCR値の分布をみてもらえればわかると思いますが、RCRが5を超えていると、全部の論文の中でも3%以内ぐらいに入っている論文であるため、影響力がある論文であることがわかります。例えばRCRが100を超えるようなことがあれば、分野を超えて歴史に残るような影響力を示した論文であるといえるでしょう。

RCR値の分布 iCiteより出展(https://icite.od.nih.gov/stats)

いくつか試してみましたが、筆者の論文はよいものでRCRが5-7程度でした。総説はあまり関係ないかもしれないですが、PMID 22887739 (約1000報引用)の総説が55.27でした。この指標の難点はPubMed収録の論文しか対象でない、つまり物理学分野は使えないということと、引用数が少なすぎる出たばかりの論文は当然ですが、評価できないということですね。

ともあれウェブサイトで、PMIDを入力すると1秒ほどで結果が表示されるので、ぜひ自分の論文を試してみてはいかがでしょうか。

その他の記事

今月号の無料公開記事は「反水素原子の分光測定に成功」。国家プロジェクトレベルの予算が必要な研究ですが、反物質原子による光の吸収が初めて測定され、基礎物理学の前提となっている理論が検証されたという内容。

その他にも、今月号は2016年に関連する科学の「とっておき年間画像特集2016」もあります。さらに、日本人研究者へのインタビューでは「自閉スペクトラム症研究から「個性」の探求へ」というタイトルで、東北大学の大隅典子先生のインタビューを受けています。「大隅典子の仙台通信」というブログを書いていることでも有名ですね。その他にも最新科学に関する記事が盛り沢山なのでぜひ購読をオススメします。

研究室購読キャンペーン

そういえば、Nature ダイジェスト研究室単位の購読も可能ですが、ちょうどつい先日より「研究室購読キャンペーン」が始まりました。

特典は、1年間の購読料で13ヶ月(購読開始号の前月号をプレゼント)というもの(申し込み:3月31日まで。新規購読お申し込みを対象)。オトクなんで、このキャンペーンを使って私も研究室購読を初めたいと思います。

過去記事はまとめを御覧ください

外部リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 光と励起子が混ざった準粒子 励起子ポラリトン
  2. 3つのラジカルを自由自在!アルケンのアリール-アルキル化反応
  3. アズワンが第一回ケムステVプレミアレクチャーに協賛しました
  4. オンライン講演会に参加してみた~学部生の挑戦記録~
  5. 市村賞受賞記念フォーラム開催
  6. 第43回ケムステVシンポ「光化学最前線2024」を開催します!
  7. 電気化学的一炭素挿入反応でピロールからピリジンを合成~電気化学的…
  8. シンガポールへ行ってきた:NTUとNUS化学科訪問

注目情報

ピックアップ記事

  1. 産学それぞれの立場におけるマテリアルズ・インフォマティクス技術活用
  2. ランバーグ・バックランド転位 Ramberg-Backlund Rearrangement
  3. 図に最適なフォントは何か?
  4. エステルを使った新しいカップリング反応
  5. 計算化学:基底関数って何?
  6. コープ脱離 Cope Elimination
  7. 第15回 触媒の力で斬新な炭素骨格構築 中尾 佳亮講師
  8. 3.11 14:46 ①
  9. サンギ、バイオマス由来のエタノールを原料にガソリン代替燃料
  10. ワートン反応 Wharton Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP