[スポンサーリンク]

archives

色素増感太陽電池用部材の開発・高効率化と製品開発動向【終了】

日時        :       2009年9月18日(金) 10:30?16:30

会場        :     東京・江東区亀戸 商工情報センター(カメリアプラザ) 9F 第2研修室
≪会場地図はこちら≫

受講料     :
(税込)     52,500円
⇒E-mail案内登録会員 49,800円
※資料・昼食付
上記価格より:<2名で参加の場合1名につき7,350円割引><3名で参加の場合1名につき10,500円割引>(同一法人に限ります)

申し込みはこちらをクリック!

講師        :      第1部 色素増感太陽電池用増感色素の分子設計
≪10:30?11:45>>

岐阜大学 工学部 機能材料工学科 教授 松居 正樹 氏

第2部 色素増感太陽電池用電極の製造・成膜技術と高効率化
≪12:30?13:45>>

アステラテック(株) 代表取締役 三好 幸三 氏

第3部 色素増感太陽電池用シール剤の設計と要求特性
≪14:00?15:00>>

(株)スリーボンド 研究開発本部 開発部 素材開発課 課長 三国 博之 氏

第4部 樹脂製色素増感太陽電池の意匠性を利用した製品開発動向
≪15:15?16:30>>

(株)積水樹脂技術研究所 環境エネルギーグループ 湯浅 雅也 氏
講演内容  :     第1部 色素増感太陽電池用増感色素の分子設計

※後日掲載いたします。

第2部 色素増感太陽電池用電極の製造・成膜技術と高効率化
<趣旨>
次世代太陽電池として注目されている色素増感太陽電池において、その光電変換効の主役となるのは多孔質半導体、色素と電解液である。しかし、実際の製品にする場合には、電極の良し悪しが取り出し後の変換効率および耐久性に関して大きな影響を与える。また、色素増感太陽電池の電極は電解液に含まれるヨウ素の影響を受けることから、他の太陽電池の電極とは違った特殊な仕様が要求される。
本セミナーでは色素増感太陽電池に必要な電極の技術と動向、およびその電極を製造するための成膜技術に関して解説する。

1.色素増感太陽電池の構造

2.色素増感太陽電池の電極に求められるもの

3.色素増感太陽電池に使われる電極の種類
3.1 電極の種類
3.2 接続構造と技術動向

4.成膜について

5.ウェットプロセスによる成膜
5.1 ディッピング
5.2 スピンコート
5.3 メッキ

6.ドライプロセスによる成膜
6.1 蒸着
6.2 CVD
6.4 PVD

7.アステラテックイオンアシストスパッタ

8.印刷

9.色素増感太陽電池の効率と電極の影響

10.電極の耐久性と成膜技術
10.1 電極の材料
10.2 腐食防止方法

11.色素増感太陽電池とその電極の将来像

□質疑応答・名刺交換□

第3部 色素増感太陽電池用シール剤の設計と要求特性
<趣旨>
色素増感太陽電池の実用化にあたって、市場での耐久性を確保するためのキーマテリアルの一つとしてシール剤が挙げられる。シール剤は電解液や電解質の漏洩防止、およびセル内部への水分や汚染物質の混入を防止するために重要である。本セミナーでは色素増感太陽電池に適したシール剤の設計、およびシール剤を取り扱う際の注意点について解説する。

1.重合(硬化)の基礎
1.1 接着剤、シール剤の分類
1.2 接着の素反応
1.3 重合(硬化)反応の種類
1.4 逐次反応と連鎖反応

2.色素増感太陽電池用シール剤の設計①
2.1 シール剤に適した官能基、重合(硬化)反応
2.2 ラジカル反応とカチオン重合
2.3 光硬化性樹脂の基礎

3.シールの基礎
3.1 漏れの種類
3.2 ぬれと接触角
3.3 表面張力と界面張力
3.4 界面での相互作用

4.色素増感太陽電池用シール剤の設計②
4.1 耐電解液性
4.2 溶解度パラメータ
4.3 水分・電解液バリア性
4.4 耐光性
4.5 耐ヨウ素性

□質疑応答・名刺交換□

第4部 樹脂製色素増感太陽電池の意匠性を利用した製品開発動向
<趣旨>
積水樹脂は、従来の太陽電池では実現できない、多彩な色彩、本体の樹脂化といった特徴をもつ色素増感太陽電池の実用化を目指している。色素増感太陽電池は、高価な部材がなく、作成工程が容易であるため、低コスト化も期待できる。現時点で、屋外3.2年程度の寿命が確保できており、色素増感太陽電池を用いた屋内製品の市場投入が視野に入ってきた。最終的には電力用途への展開を目指し、研究開発を推進している。

1.積水樹脂の紹介

2.積水樹脂が推進する色素増感太陽電池(以下DSC)について
2.1 太陽電池の市場について
2.2 DSCについて(基本構成、他の太陽電池との比較)
2.3 他社との方向性の差別化
2.4 製品化ステップ

3.積水樹脂製DSCの作成工程
3.1 使用部材
3.2 酸化亜鉛半導体の作成
3.3 組立

4.積水樹脂製DSCの性能
4.1 変換効率
4.2 耐久性

5.屋外曝露試験
5.1 単結晶シリコン系太陽電池との比較試験
5.2 垂直設置における、方位ごとの発電状況
5.3 アプリケーションの屋外曝露試験

6.展示会でのアンケート調査結果

7.まとめと今後の方針

□質疑応答・名刺交換□

申し込みはこちらをクリック!
The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院准教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. テトラキス(トリフェニルアセタート)ジロジウム(II):Tetr…
  2. リチウム二次電池における次世代電極材料の開発【終了】
  3. りん酸2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニ…
  4. 芳香環シラノール
  5. イソプロポキシボロン酸ピナコール:Isopropoxyboron…
  6. ナノ粒子の安全性、リスク評価と国際標準化の最新動向【終了】
  7. フルオラス向山試薬 (Fluorous Mukaiyama re…
  8. 塩化インジウム(III):Indium(III) Chlorid…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 最新 創薬化学 ~探索研究から開発まで~
  2. 第18回 出版業務が天職 – Catherine Goodman
  3. タミフルの新規合成法
  4. 近年の量子ドットディスプレイ業界の動向
  5. 第14回 有機合成「力」でケミカルバイオロジーへ斬り込む - Joe Sweeney教授
  6. 【朗報】HGS分子構造模型が入手可能に!
  7. Nanomaterials: An Introduction to Synthesis, Properties and Applications, 2nd Edition
  8. ヘキサニトロヘキサアザイソウルチタン / Hexanitrohexaazaisowurtzitane (HNIW)
  9. 芳香族化合物のスルホン化 Sulfonylation of Aromatic Compound
  10. グサリときた言葉

関連商品

注目情報

注目情報

最新記事

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

Chem-Station Twitter

PAGE TOP