[スポンサーリンク]

archives

水溶性アクリルアミドモノマー

[スポンサーリンク]

概要

皆さまはポリマー材料と聞いたとき、何をイメージしますか?身の回りにある樹脂製品から特殊な機能性高分子など、それぞれ思い浮かべるものは違うのではないでしょうか。このようにポリマー材料は様々な用途で使われています。その魅力はモノマーや重合条件などによって物性が大きく変わる点です。今回は、アクリルアミド骨格を有するモノマーに着目して、その特性やポリマー材料としたときの用途などをご紹介します。

アクリルアミドポリマーの物性

一般的にアクリルアミドポリマーは次のような特長を持つと言われています。

・水溶性ポリマーとして知られる

・生体適合性が高く、バイオマテリアルとして注目されている

・架橋度によって、増粘剤から親水性コーティングまで用途の幅が広い

アクリルアミドポリマーの具体的な利用例は、電気泳動用のゲル、保水剤、吸収剤、感温性ゲル材料、組織培養培地、土壌改良剤などであり、総じて「水」に関わる分野で使われます。アクリル板としておなじみのPMMA(ポリメタクリル酸メチル)や、発泡スチロールで用いられるPS(ポリスチレン)とは、かなり性質が異なることがお分かりいただけるかと思います。

アクリルアミドモノマーの種類

富士フイルム和光純薬では、これらの機能性高分子の開発に有用なアクリルアミドモノマーを取り扱っております(検索ページはこちら)。代表的なモノマーの構造と、これを原料としたポリマーの機能や用途をいくつか示します。(表1)

表1  代表的なアクリルアミド誘導体とポリマーの機能・用途

これ以外にも多くのアクリルアミド誘導体がありますが、特にユニークなものとして、ベタイン構造を有する単官能アクリルアミドと、官能基の数や結合位置、主鎖の構造が異なる多官能アクリルアミド(2,3,4官能)をピックアップします。

高親水性単官能メタクリルアミドモノマー(FOM-03010)

<特長>  FOM-03010は、同一分子内にアミド構造とベタイン構造を有しており、非常に高い親水性を示します。親疎水性の指標となるCLogP値で比較すると、汎用の親水性モノマーは-2~+1程度であるのに対して、FOM-03010は-10を示し、はるかに高い親水性を示しています(図1)。水に50 wt%以上溶解、さらにメタノールなどにも容易に溶けます。また、耐加水分解性にも優れています。

図1. FOM-03010のCLogP値

<用途>  FOM-03010を含むポリマーは、培養容器などの細胞を扱う器具のコーティング剤として有効です。FOM-03010とメタクリル酸ブチルとの共重合体をガラス表面に塗布し、マウス繊維芽細胞(3T3細胞)の付着性を確認すると、共重合体を塗布した右側では細胞の付着が見られず、細胞非付着性を示すことが観察されました。

図2. FOM-03010共重合体をコーティング剤とした細胞非付着性評価

疎水性相互作用を抑制できる親水性コーティングはバイオ系でよく用いられており、基材表面へのタンパク質や細胞の付着を防止する有効な方法になります。例えば、医学分野では人工臓器やカテーテルなどを対象として血栓の形成を抑制します。また、歯学分野では細菌の付着を防止する効果が期待できます。

水溶性多官能アクリルアミドモノマー(FOM-03006, -03007, -03008, -03009)

既存の架橋剤は水への溶解性が低く、皮膚刺激性や感作性を有するものが多い課題がありました。これに対してFOM-03006は高い水溶性、硬化性、安定性(耐加水分解性)、安全性を併せ持った多官能アクリルアミドモノマー(架橋剤)として開発されました。類似する化合物として、官能基の数や結合位置、主鎖の異なるタイプFOM-03007, -03008, -03009があります(表2)。

表2  多官能アクリルアミド(2,3,4官能)の構造と物性

ポリマーは架橋の様式で物性が大きく変化します。そのため、求めるポリマーの物性や使用する目的に合わせた架橋剤の種類や添加量の最適化が重要となってきます。ここからは、FOM-03006を例として、多官能アクリルアミドモノマーの特長や用途についてご紹介します。

<FOM-03006の特長>  FOM-03006は、水に50 wt%溶解するほか、メタノールなどの親水性溶媒にも容易に溶けます。また、酸性~塩基性水溶液中での耐加水分解性に優れています(図3)。同じくアクリルアミド骨格を持つ2官能性のTM-1と比較しても明確な違いがあります。ポリマー材料の用途を考えた場合に確認すべき安全性評価においても、全て問題ないことが確認されました(皮膚刺激性・腐食性:PII = 0、無刺激、皮膚感作性:陰性、変異原性(Ames):陰性)。

<FOM-03006の用途 ①親水性コーティング>  FOM-03006と水溶性の光ラジカル開始剤を水に溶解し、基材に塗布した後に光を照射すると水に不溶な硬化膜が形成できます。

 

FOM-03010(単官能) / FOM-03006(架橋剤)/ 光ラジカル開始剤 = 30 / 67 / 3の組成物から得られる光硬化膜(コートA)は、親水性に優れており、水接触角が小さくなります(表3)。なお、コートAはPET基板に塗布、乾燥 (50℃/5分)、光硬化 (3 J/cm2)して作成しています。光硬化には高圧水銀灯を使用し、露光量はUV-Aで管理しています。

表3 コートAの光硬化膜の水接触角

 

<FOM-03006の用途 ②硬化収縮の小さいコーティング膜>   市販の多官能アクリルモノマーをFOM-03006に置き換えると、硬化収縮が小さいコーティング膜ができます。PETフィルムに塗布して硬化させた結果、FOM-03006を用いたコートBは、市販の多官能アクリルモノマーを用いたコートCと比較して、カールが少ないことが確認されました。

※ コートB:HEMA  / FOM-03006/ 光ラジカル開始剤 = 50 / 47 / 3 ※ コートC:HEMA / 市販多官能モノマー/ 光ラジカル開始剤 = 50 / 47 / 3

FOM-03006のその他の用途

歯科材料:   親水性モノマーとして知られるHEMA(2-hydroxyethyl methacrylate)の代替材料として、性能や安全性の改善が期待されるFOM-03006が検討されています。1), 2)

ヒドロゲルの架橋剤:   ポリアクリルアミドから構成されたヒドロゲルは、一般に高架橋剤濃度では脆く、あまり伸びずに破断しやすいものとなり、低架橋剤濃度では伸びやすく、応力がかかりにくいものとなります。4官能のFOM-03006を架橋剤として用いると、低架橋剤濃度の条件でより高い応力まで破断せず、元の形状に戻るアクリルアミドポリマーが得られたと報告されています。3)

おわりに

今回は水溶性モノマーについてご紹介しました。いかがでしたでしょうか?水溶性のモノマーと架橋剤を用いた水系コーティング技術は、産業分野において揮発性有機化合物(VOC: Volatile Organic Compounds)の低減につながります。また生体適合性の高さから、医療、バイオサイエンス領域での用途開発も期待されています。機能性材料としてアクリルアミドポリマーのポテンシャルはまだまだありそうです。皆さまの研究にもぜひお役立てください!詳しくは関連ページからご確認いただけます。

引用文献

1)Pedano, M. S. , Yoshihara, K. , Li, X. , Camargo, B. , Landuyt, V. K. , Meerbeek, B. V.: Mater. Sci. Eng. C., 126, 112105 (2021). DOI: 10.1016/j.msec.2021.112105

2)Yoshihara, K. , Nagaoka, N. , Okihara, T. , Irie, M. , Matsukawa, A. , Pedano, M. S. , Maruo, Y. , Yoshida, Y. , Meerbeek, B. V. :J. Mater. Chem. B., 8, 5320 (2020). DOI:10.1039/d0tb00079e

3) 吉田孝太郎, 柴田充弘, 寺本直純 : “ポリアクリルアミドゲルの圧縮物性における架橋剤の官能基数の影響”, 第 28 回ポリマー材料フォーラム (2019).

関連ページ

富士フイルム和光純薬 試薬ページ 水溶性アクリルアミドモノマー

富士フイルム和光純薬 化成品ページ 水系硬化材料

 

富士フイルム和光純薬

投稿者の記事一覧

「次の科学のチカラとなり、人々の幸せの源を創造する」
みなさまの研究開発を支えるチカラとなるべく、
これからも高い技術とクオリティで、次代のニーズにお応えします。
Twitterでの情報提供を始めました。

関連記事

  1. フラーレンの単官能基化
  2. りん酸2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニ…
  3. 高電気伝導性を有する有機金属ポリイン単分子ワイヤーの開発
  4. マテリアルズ・インフォマティクスにおけるデータの前処理-データ整…
  5. 「幻のイオン」、テトラフェニルアンモニウムの合成を達成!
  6. ワインのコルク臭の原因は?
  7. 高反応性かつ取扱い容易な一酸化炭素の代用試薬,N-…
  8. 太陽電池バックシートの開発と評価【終了】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学の成果で脚光を浴びた小・中・高校生たち
  2. オンライン|次世代医療・診断・分析のためのマイクロ流体デバイス~微量、迅速・簡便、精密制御機能をどう生かすか~
  3. 動的共有結合性ラジカルを配位子とした金属錯体の合成
  4. CEMS Topical Meeting Online 機能性材料の励起状態化学
  5. 「女性用バイアグラ」開発・認可・そして買収←イマココ
  6. 目指せ!! SciFinderマイスター
  7. タンチョウ:殺虫剤フェンチオンで中毒死増加
  8. 「化学物質の審査及び製造等の規制に関する法律施行令の一部を改正する政令」が閣議決定されました
  9. 2016年8月の注目化学書籍
  10. 研究室でDIY!ELSD検出器を複数のLCシステムで使えるようにした話

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP