[スポンサーリンク]

一般的な話題

e.e., or not e.e.:

[スポンサーリンク]

that is the question:

それでは問題です。深く考えず、ぱっと解答して下さい。

あるバットとボールは併せて1100円です。バットはボールより1000円高いです。ボールはいくらですか?

今回のポストはNature Chemistry誌に掲載されていたTulane大学のBruce C. Gibb教授の主張を紹介しまして、鏡像異性体について少し皆さんにも考えて頂きたいと思います。

Chemical intuition or chemical institution?

Gibb, B. C. Nature Chem. 4, 237 (2012). doi:10.1038/nchem.1307

 

有機化合物の立体構造について理解が進むずっと前から、ある種の化合物が平面偏光の振動面を回転させる現象は知られていました。そしてあまりにも有名なパスツールの実験(酒石酸ナトリウムアンモニウムの結晶の分別)によって、この振動面を全く逆方向に回転させる分子の対が存在すること、すなわち光学異性体の存在が実証されたのでした。

tartaric.jpg

酒石酸ナトリウムアンモニウムの結晶(結晶の構造が鏡像の関係にある)

鏡像異性体が50:50で混合されたラセミ体は振動面を回転させないのに対し、パスツールが分別して得られた化合物や天然の酒石酸は右、もしくは左向きに振動面を回転させます。その右向き、左向きに回転させる度合いを旋光度と呼びますが、この旋光度には濃度、温度依存性があることから旋光度ではなく、比旋光度で表記するのが一般的です。

今、純粋な100%の光学異性体が示す比旋光度[α]D (仮にAとします)と、もう一方の光学異性体が示す比旋光度[α]D (Bとします)が測定できたとすれば、その値は符号は逆であるものの絶対値が同じであるはずです。よって、両方の光学異性体が50:50で混合されたラセミ体は比旋光度を示すことになります。

では、100:0、50:50ではなく、75:25の割合で光学異性体を混合したものがあったら[α]Dはどうなりますか?有機化学の問題としてよく出題される問題ですが、A x 0.75になるのではなく、A x 0.50になります。25%の逆向きの旋光性を示す異性体が25%分を打ち消すからと考えればいいでしょう。このことさえ頭に入れておけば、異性体の混合比が不明なサンプルであっても、比旋光度を測定することで混合比を推定することが可能です。これは、光学純度(Optical Purity)と呼ばれ、光学異性体の純度を示す指標として古くから用いられて来ました。

しかし、近年では比旋光度の測定というもの自体が蔑ろにされる傾向もあり、この光学純度というのはほぼ死語となりつつあります。その代わりに用いられているのが鏡像体過剰率(Enantiomeric Excess: e.e.)です。これは異性体の純度を比旋光度から決定するのではなく、HPLC、GCやNMRなどを用いて直接異性体の比率を決定するのが一般的になったからであると思われます。

Enantiomeric

AR、ASはそれぞれの鏡像異性体のモル分率を表す

100%e.e.ということは完全に純粋な鏡像体、100:0であることを示し、0%e.e.はラセミ体、50:50であることを示します。では、80%e.e.はどんな比率でしょうか?

これでようやく冒頭のクイズに戻りますが、クイズの正解は100円ではなく、50円です。80%e.e.の場合は80:20ではなく、90:10の割合で異性体が混合していることになります。この二つの問題には共通点がありますよね。ぱっと見の印象で即答すると、間違いやすいことこの上ありません。Gibb教授のthesisで指摘されているのがこのe.e.の問題です。Thesisのタイトルにあるintuitionというのはあまり目にしない単語ですが、

「哲学で、推理を用いず、直接に対象をとらえること。また、その認識能力。直覚。」

の意です。心理学者Daniel Kahnemanはヒトには二つの思考パターン、system 1system 2があるとしていて、[1] system 1では物事を自動的に、素早く、あまりはっきり意識して考えない。これは会話などによく用いられ、ほぼ労力なくできるもの。ただし時に誤ることがあります。一方system 2では意識して考えるという違いがあります。よって、もしあなたが冒頭のクイズに100円と答えてしまったならば、それはsystem 1が、50円と答えたならばsystem 2が働いたと考えていいと思います。果たして、e.e.というのはどちらのsystemが求められるでしょう?intuitionで答えられる方もいるかもしれませんが、多くの方はsystem 2ではないでしょうか。

もしあなたが不斉触媒の開発などに携わっていたり、不斉合成を用いた実験を行っているならば、得られた化合物の鏡像体純度をHPLCやNMRを用いて検定する必要があるはずです。その際、e.e.を計算していると思いますが、上記の計算式にチャートのピーク面積を代入するだけでいいので便利です。

確かに値を出すのは楽なのですが、e.e.には上述のように勘違いを誘起しかねないという問題があります。よってこのe.e.というのは止めませんか?というのが著者の主張です。鏡像体過剰率(e.e.)の代わりに、鏡像体比 (Enantiomer ratio: e.r.)を用いる方がすんなり理解しやすいという提案がされています。

hands.jpg

図は論文より引用

確かに、上の図で67%e.e.、5:1とどちらで表現するかと問われれば後者を選ぶと思います。

aldol_reaction.png

この生成物何%e.e.?

また、e.e.にはもう一つ致命的な弱点があり、例えば上のアルドール反応によって新たに生じた生成物は何%e.e.と一言で表す訳にはいかず、さらにジアステレオマー過剰率(d.e.)を組み合わせてもうまく表現できません。

異性体の比率の表し方としては光学純度から始まって、鏡像体過剰率が定着しているのが現状ですが、そろそろ見直してもいいのかもしれません。なんでもかんでもユーザーフレンドリーにすればいいってものでもないですし、ゆとり教育みたいなことを推奨するつもりもありませんが、確かにe.e.には不便だなあと感じることがあることも事実です。筆者はe.r.やd.r.の方を使っていこうかなあと思いました。ただ、3:1とか27:1とかだと分かりづらいので、75:25とか96:4みたいにすれば一目でわかると思うのですがいかがでしょうか。

さて、皆さんはどうされますか?system 2でお答え下さい。

Thus conscience does make cowards of us all;
And thus the native hue of resolution
Is sicklied o’er with the pale cast of thought,
And enterprises of great pith and moment
With this regard their currents turn awry,
And lose the name of action.

このようにもの思う心がわれわれを臆病にする、
このように決意のもって生まれた血の色が
分別の病み蒼ざめた塗料にぬりつぶされる、
そして、生死にかかわるほどの大事業も
そのためにいつしか進むべき道を失い、
行動をおこすにいたらず終わる。(ハムレット第三幕第一場、訳:小田島雄志)

参考文献

  1. Kahneman, D. Thinking, Fast and Slow. (Farrar, Straus and Giroux, 2011).

 

関連書籍

ペリプラノン

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. 手術中にガン組織を見分ける標識試薬
  2. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016
  3. 進化する電子顕微鏡(TEM)
  4. プラナーボラン - 有機エレクトロニクス界に期待の新化合物
  5. ルドルフ・クラウジウスのこと① エントロピー150周年を祝って
  6. 「糖鎖レセプターに着目したインフルエンザウイルスの進化の解明」ー…
  7. カルボン酸に気をつけろ! グルクロン酸抱合の驚異
  8. PACIFICHEM2010に参加してきました!②

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. エリック・カレイラ Erick M. Carreira
  2. 配位子だけじゃない!触媒になるホスフィン
  3. レア RARE 希少金属の知っておきたい16話
  4. ホストとゲスト?
  5. 癸巳の年、世紀の大発見
  6. トーマス・エブソン Thomas Ebbesen
  7. 光化学スモッグ注意報が発令されました
  8. 化学物質だけでiPS細胞を作る!マウスでなんと遺伝子導入なしに成功
  9. NMR Chemical Shifts ー溶媒のNMR論文より
  10. クライゼン転位 Claisen Rearrangement

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年5月
« 4月   6月 »
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP