[スポンサーリンク]

ケムステニュース

200MHzのNMRが持ち歩けるって本当!?

[スポンサーリンク]

理化学研究所
株式会社 JEOL RESONANCE
イムラ・ジャパン株式会社

の共同研究グループは高分解能ポータブルNMR(200 MHz)の開発に成功した。
既存の卓上NMRの中で最高磁場であり、持ち運びも容易なハイスペック機種。

プレスリリース原文はこちら

概要

高温超伝導バルク磁石により卓上機並みのサイズを実現

画像診断に使われる磁気共鳴画像(MRI)と、タンパク質の構造解析などに用いられる核磁気共鳴(NMR)には、超電導線材を巻いたコイルが強力な電磁石として使われています。超電導状態の維持には液体ヘリウムなどの冷媒が必要であり、MRIやNMRは基本的に移動や移設が困難な構造をしています。特にNMRは、性能の向上に伴いサイズの大型化が進んでいます。

近年、複数の海外メーカーが永久磁石を使った卓上NMRを販売していますが、磁場強度の限界から用途は限定的です。一方、酸化物超電導体と呼ばれる高温超電導素材は、塊(バルク)のまま超電導状態で着磁すると、永久磁石よりもはるかに強い磁場を発生し続ける性質があり、しかも冷媒が不要で冷凍機でも磁場を維持できます。理化学研究所などの研究グループは2011年、高温超電導バルク磁石を用いた世界初の超小型MRIを開発しました。

今回、理化学研究所生命機能科学研究センター構造NMR技術研究ユニットの仲村高志専任技師、株式会社JEOL RESONANCE 技術部の内海博明部員、宮本哲雄副部長、イムラ・ジャパン株式会社 CASE・超電導研究室の柳陽介主任研究員らの共同研究グループは、高温超電導バルク磁石の高度化に取り組み、MRIよりもさらに高い磁場均一度が必要な高分解能200MHz(4.7 T)NMRの開発に成功しました。さらに、着磁した高温超電導バルク磁石を冷凍機で冷却し、磁場を発生させた状態で輸送・移設しても、磁石の性能は変化しないことを確認しました。

高分解能NMRがコンパクト・ポータブルになることで、従来機では不可能だったデスクサイドでの利用が可能になります。また、液体ヘリウムが不要であるため、ヘリウムの資源リスクを回避することで、NMRの維持コストが上昇した際の代替装置にもなり得ます。

(プレスリリースより引用)

特徴

通常のNMR装置には、沸点–269 °Cの液体ヘリウムで冷やすと超伝導状態を示す低温超伝導体(超電導コイル)が使用されている。

一方、液体窒素の沸点–196 °Cにおいても超伝導状態(電気抵抗ゼロ)を示す物質を高温超伝導体と呼ぶ。
今回の開発では、2011年の超小型MRIでも用いたユーロピウムバリウム銅酸化物(EuBCO)から、結晶方位が揃った単一結晶粒の日本製鉄製バルクを使用したとのこと。バルクとは塊のことで、通常の線材(コイル)と違い、塊状のもの。超電導バルク磁石の方が、超電導コイル磁石よりも安価であり、強い磁場を実現できる素材として注目されている(下図、こちらより引用)。

超電導バルク磁石の特徴

 

本体は縦長の形状をしており、スペースを専有しない構造になっている(下図)。
既存の冷媒を使用するNMRが背景に置かれており、大きさの違いがアピールされている。

図はプレスリリースより引用

上部から見た図。手のサイズと比べても非常に小さいことがわかる。

図はプレスリリースより引用

 

既存の卓上NMRとの比較

Picospin, Spinsolve, NMReady, Pulsarの性能比較は過去記事参照。いずれも磁場は80 MHz以下。
過去記事に掲載がなかったものとしては、Brukerが発表したFourier 80がある。

今回の発表は製品の発表ではないため一概に比較することはできないが、高さ(height)はあるもののスペースは専有せず、過去最高磁場のポータブルNMRであることは事実。
実際の製品の価格、機能、オプションなどの発表が待ち遠しい。

 

卓上NMRの用途

大きな利点は、冷媒が不要であること。近年の液体ヘリウムの高騰は尋常ではなく供給難は必至であり[1]、研究費を圧迫していることは言うまでもなく、冷媒不要のNMRの高磁場化が切に望まれている。
冷媒なしで400~500 MHzの高磁場が実現される日が来るのかはわからないが、そうなれば研究環境は大きく変化する。

また、過去記事にも記載されているが、実際の使用面では反応のNMRによる追跡簡単な化合物のNMR測定などで特に威力を発揮する。
特に、多くの機種で1H, 19Fは測定可能であり、NMRによる定量実験が可能である。
個人的には、19F、31P、11Bなどの専用機として使えば、ATMユニットの摩耗が抑えられ、現行の高磁場NMRのトラブルを減らせるのではないかと考えている(実際、19F NMRの多用により、度重なるチューニング操作によってATMユニットが摩耗し、結構な頻度でATMエラーが出ることがある)。

[1] ヘリウム危機について

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. 第二回触媒科学国際シンポジウム
  2. 【第一三共】抗血小板薬「プラスグレル」が初承認‐欧州で販売へ
  3. 界面活性剤のWEB検索サービスがスタート
  4. 直径100万分の5ミリ極小カプセル 東大教授ら開発
  5. 福井鉄道と大研化学工業、11月に電池使い車両運行実験
  6. 2023年化学企業トップの年頭所感を読み解く
  7. 化学遺産スロイス『舎密学』とグリフィス『化学筆記』が展示へ
  8. ドミノ遊びのように炭素結合をつくる!?

注目情報

ピックアップ記事

  1. チェーンウォーキングを活用し、ホウ素2つを離れた位置へ導入する!
  2. 安積徹 Tohru Azumi
  3. 薬が足りない!?ジェネリック医薬品の今
  4. 振動円二色性スペクトル Vibrational Circular Dichroism (VCD) Spectrum
  5. 富山化学 「YP-18 」の開発を開始
  6. モリブデンのチカラでニトロ化合物から二級アミンをつくる
  7. 赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-
  8. 基礎から学ぶ機器分析化学
  9. 第14回 有機合成「力」でケミカルバイオロジーへ斬り込む - Joe Sweeney教授
  10. 9,10-Dihydro-9,10-bis(2-carboxyethyl)-N-(4-nitrophenyl)-10,9-(epoxyimino)anthracene-12-carboxamide

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年12月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP