[スポンサーリンク]

化学者のつぶやき

マンガン触媒による飽和炭化水素の直接アジド化

[スポンサーリンク]

 

アジド基は、アミンやイミン、アミド、含窒素複素環といった様々な官能基や骨格に変換可能です(図1)。[1]例えば、銅触媒存在下、アジド化合物とアルキンを用いて1,2,3-トリアゾール骨格を構築できるヒュスゲン環化付加反応。2つの分子(アジド化合物とアルキン)を中性条件や水中でも繋げることができるため、その簡便さから、アフィニティプローブや蛍光プローブといった分子プローブの合成に大活躍しています[2]このようにアジド化合物は、機能性分子の合成における有用な中間体となることから、アジド基をより簡便に導入する手法の開発が世界中で盛んに行われています。

 

2015-05-02_17-52-42

図1 アジド化合物の有用性

 

さてそのような背景のもと、今回は最近米国プリンストン大のGrovesらによって報告された、マンガン触媒を用いたsp3炭素ー水素(C–H)結合の直接アジド化について紹介したいと思います。

 

“Manganese-Catalyzed Late-Stage Aliphatic C–H Azidation”

X. Huang, T. M. Bergsten, J. T. Groves, J. Am. Chem. Soc.2015, 137, 5300. DOI: 10.1021/jacs.5b01983

 

アジド化古今東西

通常、アジド基は、ハロゲンやヒドロキシ基を脱離基として用い求核置換反応によって導入します。しかし、対応するハロゲン化物並びにアルコールを事前に調製する必要があるため、アジド化合物の合成は多段階を要します。従って、直接的にC–H結合をアジド化する手法が盛んに研究されています。

近年、パラジウムやロジウム、銅触媒を用いることでsp2C–H結合を直接アジド化する反応が報告されています[3]。一方で、sp3C–H結合(飽和炭化水素)を高い基質一般性で直接アジド化する反応はほとんど報告例がありませんでした。ところが、ごく最近、Hartwigらは鉄触媒を用いたsp3C–H結合の直接アジド化反応を発見しました[4]。Hartwigらの反応では、ベンジル位及び3級炭素のC–H結合選択的に直接アジド化するという化学選択性を有しています。

今回の紹介する論文も同様に、飽和炭化水素の直接アジド化です (図2)。

 

2015-05-02_21-17-18

図2 様々なアジド化反応

 

マンガンを用いたsp3C–Hハロゲン化からsp3C–Hアジド化への展開

本論文の著者であるGrovesらは、2010年にマンガンポルフィリン錯体を触媒に用い、次亜塩素酸を用いることで、sp3C–H結合のクロロ化を達成しています[5]。また、2012年に同じ錯体を触媒に用いて、sp3C–H結合をフッ素化することに成功しました。

図3に示すように、この反応においてはマンガンポルフィリン錯体にフッ化物イオンが配位した状態でアルキルラジカルと反応しフッ素化が進行しています[6]。彼らは、マンガンポルフィリン錯体のフッ化物イオンをアジドに置き換えることで、同じようにsp3炭素のアジド化が進行すると考えました(図3)。

 

2015-05-02_21-17-59

図3 マンガン触媒によるC–H結合の官能基化と今回の反応のコンセプト

 

位置選択的なsp3C–Hアジド化

最適化した反応条件を以下に示します(図4)。触媒量のマンガン錯体及び酸化剤としてヨードシルベンゼン(PhIO)存在下、アジ化ナトリウム(NaN3)水溶液を添加することで、室温で目的のアジド化体を得ることに成功しました。アミドやエステル、ケトンやヘテロ環を含む基質を用いても問題なくアジド化が進行します。安価で入手容易なアジ化ナトリウムをアジド化剤として利用できる点も本反応の特筆すべき点であるでしょう。

 

2015-05-02_21-18-34

図4. マンガン触媒を用いた飽和炭化水素の直接アジド化反応

 

さらに彼らは、生物活性物質にもアジド化を行いました (図5)。複雑な構造をもつartemisininベンゾイル保護体やpapaverineなどを用いても反応は進行し、目的のアジド化体を得ています。本反応を用いることで、合成の最終段階でアジド化体へと誘導することができるため、分子プローブ合成に役に立つことでしょう。またキラルなマンガンサレン錯体を用いると、celestolideのアジド化物がエナンチオ過剰率70%で得られています。

 

2015-05-02_21-19-12

図5 生物活性分子のアジド化と不斉アジド化(マンガン錯体が関与しているか検証)

 

推定反応機構

想定反応機構は図6のとおり。最初に3価のマンガンアジド錯体がヨードシルベンゼンによって5価に酸化され(i)、次にマンガンオキソ錯体による一電子酸化によってアルキルラジカルが生じる(ii)。配位子交換(iii)ののち、アルキルラジカルがアジドを攻撃することでアジド化が進行し(iv)、還元された3価のアジド錯体が再生する(v)。著者らは、酸化剤が触媒サイクルに関与していることやラジカルが発生していること、アジドがマンガンに配位した状態で反応が進行していることを、実験的に明らかにしています。また、量子化学計算より、マンガンに配位した窒素原子ではなく末端の窒素原子が炭素と結合すると示唆されます。

 

2015-05-02_21-20-00

図6 推定反応機構

 

終わりに

今回Grovesらは、マンガン触媒を用いたsp3C–H結合のアジド化反応を報告しました。ちょっと気になるのが、ヨードシルベンゼンでヒドロキシ化された化合物から進行していること。また、マンガンサレン錯体、酸化剤というかなり一般的な条件で直接アジド化が進行していることです。前者はヒドロキシ化された化合物からの反応機構の記載がないので、なにか根拠があることでしょう。後者は、ちょっとわかりませんが、一見して単純だが、この組み合せはなかったという部類の発見ということに落ち着くのだと思います。

さて、2級、3級アジド化合物の簡便な合成法は、有機合成、創薬化学、ケミカルバイオロジー研究の発展に貢献することが期待されます。また、今回キラルなサレン錯体を用いることで不斉アジド化できることが示されており(反応機構の証明という意味ではあるが)、サレン錯体を今後さらに改良することによって、エナンチオ選択的なアジド化法が確立されることを期待しましょう。

 

参考文献

  1. Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188. DOI: 10.1002/anie.200400657
  2. (a) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013, 113, 4905. (b) Grammel, M.; Hang, H. C. Nat. Chem. Biol. 2014, 10, 239. DOI:10.1038/nchembio0314-239a
  3. (a) Tang, C.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924. DOI: 10.1021/ja3089907 (b) Xie, F.; Qi, Z.; Li, X. Angew. Chem., Int. Ed. 2013, 52, 11862. DOI: 10.1002/anie.201305902 (c) Zheng, Q.-Z.; Feng, P.; Liang, Y.-F.; Jiao, N. Org. Lett. 2013, 15, 4262. DOI: 10.1021/ol402060q (d) Fan, Y.; Wan, W.; Ma, G.; Gao, W.; Jiang, H.; Zhu, S.; Hao, J. Chem. Commun. 2014, 50, 5733. DOI: 10.1039/C4CC01481B (e) Yao, B.; Liu, Y.; Zhao, L.; Wang, D.-X.; Wang, M.-X. J. Org. Chem. 2014, 79, 11139. DOI: 10.1021/jo502115a
  4. Sharma, A.; Hartwig, J. F. Nature 2015, 517, 600. DOI:10.1038/nature14127
  5. Liu, W.; Groves, J. T. J. Am. Chem. Soc. 2010, 132, 12847. DOI: 10.1021/ja105548x
  6. Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R.J.; Goddard, W.A., III; Groves, J.T. Science 2012, 337, 1322. DOI:10.1126/science.1222327

 

外部リンク

  • The Groves Lab — The people, the science, and the findings of the Groves Lab, Department of Chemistry, Princeton University

関連書籍

[amazonjs asin=”9048136970″ locale=”JP” title=”Alkane C-H Activation by Single-Site Metal Catalysis (Catalysis by Metal Complexes)”][amazonjs asin=”3527331549″ locale=”JP” title=”Metal Catalyzed Cross-Coupling Reactions and More, 3 Volume Set”]
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 【12月開催】第十四回 マツモトファインケミカル技術セミナー  …
  2. sp3炭素のクロスカップリング反応の機構解明研究
  3. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は…
  4. アメリカで医者にかかる
  5. ビジネスが科学を待っている ー「バイオ」と「脱炭素」ー
  6. C–NおよびC–O求電子剤間の還元的クロスカップリング
  7. 化学研究ライフハック: Firefoxアドオンで化学検索をよりス…
  8. 有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内…

注目情報

ピックアップ記事

  1. 界面活性剤の市場分析と各社事業戦略について調査結果を発表
  2. 2016年化学10大ニュース
  3. 周期表を超えて~超原子の合成~
  4. 化学者のためのエレクトロニクス入門⑤ ~ディスプレイ分野などで活躍する化学メーカー編~~
  5. 【医薬分野のみなさま向けウェブセミナー】マイクロ波を用いた革新的製造プロセスとヘルスケア領域への事業展開
  6. 良質な論文との出会いを増やす「新着論文リコメンデーションシステム」
  7. 第32回ケムステVシンポ「映える化学・魅せる化学で活躍する若手がつくばに集まる」を開催します!
  8. ハロゲン移動させーテル!N-ヘテロアレーンのC–Hエーテル化
  9. N-オキシドの合成 Synthesis of N-oxide
  10. Brevianamide Aの全合成:長年未解明の生合成経路の謎に終止符

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年5月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

第42回メディシナルケミストリーシンポジウム

テーマAI×創薬 無限能可能性!? ノーベル賞研究が拓く創薬の未来を探る…

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP