[スポンサーリンク]

スポットライトリサーチ

有機強相関電子材料の可逆的な絶縁体-金属転移の誘起に成功

[スポンサーリンク]

第410回のスポットライトリサーチは、熊本大学 自然科学教育部理学専攻化学コース 松田研究室の照屋 亮太(てるや りょうた)さんにお願いしました。

松田研究室では分子性化合物を用いた電子材料の開発を行っており、分子合成や結晶・薄膜作製とその特性評価、物性発現機構の考察を行なっています。

本プレスリリースは、金属状態が予測されるにも関わらず絶縁体状態にある有機強相関電子材料についてで、試料中の電気伝導を担う電子の数を変える「キャリアドープ」により金属状態へ変換することに成功した報告です。無機強相関電子材料への原子置換によるキャリアドープは、高温超伝導体をはじめとする電子材料開発で広く使われている技術ですが、原子置換・分子置換を行うことが難しい有機強相関電子材料では化学的なキャリアドープによる絶縁体状態からの変化を達成できた報告はありません。本研究では有機強相関電子材料であるリチウムフタロシアニン結晶がもつ孔を活用し、原子置換・分子置換をすることなく化学的なキャリアドープを行いました。その結果、電気抵抗率の大幅な低下と金属的な振る舞いを確認できました。さらに、孔のドーパントを脱離することで元の絶縁体状態の試料に戻せており、有機強相関電子材料の可逆的な絶縁体状態と金属状態の制御にも成功しています。

この研究成果は、「Angewandte Chemie International Edition」誌、および熊本大学プレスリリースに発表されました。

Reversible Insulator–Metal Transition by Chemical Doping and Dedoping of a Mott Insulator

Ryota Teruya, Tetsu Sato, Masahiro Yamashita, Noriaki Hanasaki, Akira Ueda, and Masaki Matsuda, Angew. Chem. Int. Ed. 

DOI: doi.org/10.1002/anie.202206428

研究室を主宰されている松田 真生 教授より照屋さんについてコメントを頂戴いたしました!

照屋くんが私のグループに仮配属となるまでに、私のグループでは何人かの学生さんといくつかの有機Mott絶縁体を対象に化学的キャリアドープを試行していましたが、思うような電子相転移を誘起させるには至っていませんでした。「仮」と言うのは、照屋くんは学部三年次に有機化学の学生実験と部活の大会を天秤にかけた上で部活を優先し、見事に留年してしまっていたのです。そんな失敗に、もちろん大いに反省(と後悔?)をしつつも前向きに元気に振舞う姿は、とても印象に残っています。研究活動は結晶作製と電気抵抗測定での困難と失敗の連続でしたが、持ち前の前向きに努力する力で少しずつ困難を克服することで有機Mott絶縁体の化学的キャリアドープ/脱ドープによる可逆的電子状態制御を達成しました。現在も新しい系を作って測定に取り組み続けており、まだまだ面白い現象を見つけてくれることを期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

化学の授業で習うバンド理論では金属状態になるはずなのに、電子間の大きなクーロン相互作用によって絶縁体になっている物質はMott絶縁体と呼ばれています。無機化合物のMott絶縁体では、一部の原子を他の原子に置き換えることで試料中の電気伝導を担う電子の数を変えるキャリアドープを行うことができ、高温超伝導体などの多くの電子材料が開発されています。一方、有機Mott絶縁体の結晶では、キャリアドープによる電子状態の変化が達成された例はありませんでした。有機結晶において、原子や分子を置換するのは非常に難しいためです。

リチウムフタロシアニンの分子構造(a)と結晶構造(b)および(c). (b)と(c)は見る角度を変えたもので、それぞれの青い丸と線で示した部分に孔が存在する。

今回、私たちは有機Mott絶縁体の一つであるリチウムフタロシアニン(LiPc)結晶に注目しました。LiPc結晶では、ラジカルであるLi+Pcが柱を形成するように積み重なっており、その柱に囲まれて孔が存在します。その孔にLiPcを酸化または還元することができる分子を取り込ませられれば、LiPc結晶中の電子の数を変える、すなわち、原子や分子の置換なしに化学的キャリアドープができると考えられます。実際にLiPc結晶をヨウ素蒸気に暴露すると、ヨウ素がLiPcを酸化しつつ孔の中に浸透し、得られたLiPcI結晶は金属的な電子状態となっていました。これは、有機Mott絶縁体への化学的キャリアドープによる金属への変換に成功した初めての例です。

I2に曝露した試料の結晶構造. LiPc分子の配列は曝露前のものとほとんど変わらず、孔にヨウ素原子が取り込まれている。 取り込まれたヨウ素はI5となっていた。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

LiPcIの金属伝導を確認できたところに思い入れがあります。電気伝導性有機結晶の作製方法に拡散法という方法があり、これは時間をかけて酸化還元を行いつつ結晶化させる方法です。当初、試料作製には溶液での拡散法を用いていました。溶液拡散法で作製した試料は非常に小さく、結晶構造解析も電気抵抗測定もできませんでした。しかし、小さいながらも単結晶の存在が視認できたため、より大きな結晶作製の条件探索に1年半取り組みました。その結果、測定が可能なサイズの結晶を得ることができました。その際の抵抗の温度依存性が金属的性質であり、当研究室初となる合成金属が得られたときの松田先生の喜び様は今でも忘れられません。

電気抵抗率の温度依存性

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

単結晶作製にも苦労しましたが、蒸気拡散法を用いてからはそれなりのサイズの結晶を再現して得られるようになりました。しかし、今度は諸物性測定の難しさに直面しました。ヨウ素はディスオーダーしたポリヨウ素アニオンとして存在してしており、構造解析からは全て等価なヨウ素原子に見えて、価数を決めることができませんでした。すると、LiPcの電子状態の定量的変化、すなわち、LiPcIのバンド充填率を求められず、有機Mott絶縁体からどのような状態に変化したのかを決められません。ドープに伴って結晶の強度が下がっていたり表面のラフネスが上がることもあり、低温まで安定に抵抗測定を行うこと自体にも苦労しましたが、純度の高い結晶作製と繊細な測定を根気強く行い続けることで、良好なデータ得られるようになっていきました。

Q4. 将来は化学とどう関わっていきたいですか?

半導体の企業で電子材料の開発に就きたいと思っています。

大学院までは低次元の有機電子材料の研究に取り組んでいましたが、現在の社会基盤を支えているのは無機半導体です。今後は、有機電子材料の重要性も増していくことが予想されますが、電子制御の基本的な考え方は有機も無機も関係なく、大学院までに学んだことは必ず役に立つと思います。

半導体は物理学や応用物理学が活躍するイメージがありますが、化学の知識は物質を創造するという点においては他の学問分野に勝ります。大学院までに学んだ物理化学という分野を活かして、新規電子材料を開発し、社会に貢献したいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究の成果が出るまでには非常に時間がかかりました。低温抵抗測定のほとんどは途中で結晶が折れて失敗の連続だったので、なかなか良質なデータが得られず、研究が進んでいる実感は無く私の心も折れかかっていました。しかし、実験を繰り返すうちに自身の技術の向上を感じることができました。研究には知識も大事ですが、技術も必要だと思います。実験が上手くいかない際に、なぜ上手くいかないのか、どこで失敗したのかを考え、めげることなく少しずつでも工夫して改善しながら取り組むことで、必ず良い結果に近づけると思います。まだ結果が出ていなくても、どこか工夫できるところはないかを考えながら、根気強く研究を続けてほしいです。

研究者の略歴

名前:照屋 亮太(てるや りょうた)

所属(大学、学部、研究室):熊本大学、自然科学教育部理学専攻化学コース、松田研究室

研究テーマ:化学的キャリアドープによる有機Mott絶縁体の電子状態制御

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. B≡B Triple Bond
  2. Carl Boschの人生 その2
  3. ポンコツ博士の海外奮闘録XXII ~博士,海外学会を視察する~
  4. 電気ウナギに学ぶ:柔らかい電池の開発
  5. 【11月開催】第十三回 マツモトファインケミカル技術セミナー  …
  6. ボリル化剤を無駄なく使えるsp3C–H結合ボリル化
  7. Carl Boschの人生 その6
  8. パーフルオロ系界面活性剤のはなし 追加トピック

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  2. ナノ粒子の安全性、リスク評価と国際標準化の最新動向【終了】
  3. アルカロイドの科学 生物活性を生みだす物質の探索から創薬の実際まで
  4. フルオロホルムを用いた安価なトリフルオロメチル化反応の開発
  5. 製薬業界の研究開発費、増加へ
  6. ベンゾイン縮合反応 Benzoin Condensation
  7. 日本科学未来館
  8. 【速報】HGS 分子構造模型「 立体化学 学生用セット」販売再開!
  9. ポンコツ博士の海外奮闘録⑤ 〜博士,アメ飯を食す。バーガー編〜
  10. 速報! ノーベル物理学賞2014日本人トリプル受賞!!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP