[スポンサーリンク]

化学者のつぶやき

(+)-ミンフィエンシンの短工程不斉全合成

[スポンサーリンク]


Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine
Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606. doi:10.1021/ja906472m

 

プリンストン大学・MacMillanらによる報告です。

(+)-Minfiensineは上図に示すように、特徴的な高度縮環構造をもつアルカロイドであり、2005年のOvermanらによる報告[1]を始めとして幾つかのグループから不斉全合成が達成されています。

今回MacMillanらは、この複雑な骨格に対し、独自開発したMacMillan触媒を用いるアプローチを取っています。すなわち不斉Diels-Alder反応から始まるカスケード環化反応、引き続くラジカル環化反応によって、含窒素縮環構造を効果的に構築しています。

それでは詳しく見ていきましょう。


minfiensine_2.gif

まず彼らは硫黄官能基をもつトリプタミン誘導体とプロピナールを基質として用い、MacMillan触媒を用いる不斉Diels-Alder反応条件に伏しています。付加体は弱酸反応条件下において生じるイミニウムを経由してさらに環化を起こします。類似のピロロインドリン骨格の不斉合成は、以前にも彼らのグループから報告されています[2]が、今回の反応はその発展系と言えます。MacMillan触媒は付随するブレンステッド酸によって少々挙動が異なってくることが知られているのですが、今回の系ではトリブロモ酢酸付加体が良好な結果を与えたようです。

最終的にアルデヒド部位を還元処理することで、縮環ピロロインドリン骨格を96%eeという高不斉収率で得ています。この複雑中間体は、市販化合物からわずかに3段階で合成可能ということに・・・まったく驚くべき反応です。

さて、硫黄官能基を持った基質で反応を行った理由は、後のステップでこの部分をラジカル環化の足がかりとするためです。炭素伸張を行った後、通常の(n-Bu)3SnHを試薬として反応を行っていますが、どうやら上手くいかなかった模様。代わりに(t-Bu)3SnHを用いる条件[3]が機能したということですが・・・よくこんな試薬を見つけてくるモノだなぁと思います。

また、この種の環化反応には特に必要ないはずなのに、わざわざt-BuS-基をもつ基質で反応を行っているというのも着目すべき点に思えます。メチルアルキン型の基質で反応を行う方がより短工程になるはずです(実際)。実際彼らも、当初はそういう試行錯誤を行っていたようですが、結局は生成物がE/Z異性体の混合物になってしまったということです。


minfiensine_3.gif

このように論文を読めば、節々上手くいかなかった点を節々感じ取ることはできます。しかし外観を眺めてみると、各ステップは総じて、あまりに綺麗に進むべくして進んでいるようにしか見えません。結局つまずきは主要ストラテジー変更まで行かない程度にとどまっています。戦略的に見て全てが想定範囲内にしか見えない、というのが甚だ恐ろしい。

これだけ思った通りのことがズバズバ決まればさぞや爽快だろうなぁ・・・と、まったくため息が出るばかりの合成といえます。

 

関連文献

[1] (a)  Dounay, A. B.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2005, 127, 10186. doi: 10.1021/ja0533895 (b) Dounay, A. B.; Humphreys, P. G.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368. DOI: 10.1021/ja800163v
[2] Austin, J. F.; Kim, S.-G.; Sinz, C. S.; Xiao, W.-J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482. doi: 10.1073/pnas.0308177101
[3] Bachi, M. D.; Bar-Ner, N.; Melman, A. J. Org. Chem. 1996, 61, 7116. doi: 10.1021/jo9607875

 

 関連リンク

The MacMillan Group

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「オープンソース・ラボウェア」が変える科学の未来
  2. 有機合成化学協会誌2019年11月号:英文版特集号
  3. 原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持N…
  4. マテリアルズ・インフォマティクスの基礎知識とよくある誤解
  5. なぜ電子が非局在化すると安定化するの?【化学者だって数学するっつ…
  6. 窒素固定をめぐって-1
  7. 実験教育に最適!:鈴木ー宮浦クロスカップリング反応体験キット
  8. 反応探索にDNAナノテクノロジーが挑む

注目情報

ピックアップ記事

  1. ペプチドの特定部位を狙って変換する -N-クロロアミドを経由するペプチドの位置選択的C–H塩素化-
  2. パテントクリフの打撃顕著に:2012製薬業績
  3. セレンディピティ:思いがけない発見・発明のドラマ
  4. ロバート・バーンズ・ウッドワード Robert Burns Woodward
  5. BASF International Summer Courses 2017  BASFワークショップ2017
  6. えれめんトランプをやってみた
  7. イー・タン Yi Tang
  8. マティアス・クリストマン Mathias Christmann
  9. Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜
  10. 免疫不応答の抗原抗体反応を利用できるハプテン標識化試薬

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP