[スポンサーリンク]

化学者のつぶやき

(+)-ミンフィエンシンの短工程不斉全合成

[スポンサーリンク]


Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine
Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606. doi:10.1021/ja906472m

 

プリンストン大学・MacMillanらによる報告です。

(+)-Minfiensineは上図に示すように、特徴的な高度縮環構造をもつアルカロイドであり、2005年のOvermanらによる報告[1]を始めとして幾つかのグループから不斉全合成が達成されています。

今回MacMillanらは、この複雑な骨格に対し、独自開発したMacMillan触媒を用いるアプローチを取っています。すなわち不斉Diels-Alder反応から始まるカスケード環化反応、引き続くラジカル環化反応によって、含窒素縮環構造を効果的に構築しています。

それでは詳しく見ていきましょう。


minfiensine_2.gif

まず彼らは硫黄官能基をもつトリプタミン誘導体とプロピナールを基質として用い、MacMillan触媒を用いる不斉Diels-Alder反応条件に伏しています。付加体は弱酸反応条件下において生じるイミニウムを経由してさらに環化を起こします。類似のピロロインドリン骨格の不斉合成は、以前にも彼らのグループから報告されています[2]が、今回の反応はその発展系と言えます。MacMillan触媒は付随するブレンステッド酸によって少々挙動が異なってくることが知られているのですが、今回の系ではトリブロモ酢酸付加体が良好な結果を与えたようです。

最終的にアルデヒド部位を還元処理することで、縮環ピロロインドリン骨格を96%eeという高不斉収率で得ています。この複雑中間体は、市販化合物からわずかに3段階で合成可能ということに・・・まったく驚くべき反応です。

さて、硫黄官能基を持った基質で反応を行った理由は、後のステップでこの部分をラジカル環化の足がかりとするためです。炭素伸張を行った後、通常の(n-Bu)3SnHを試薬として反応を行っていますが、どうやら上手くいかなかった模様。代わりに(t-Bu)3SnHを用いる条件[3]が機能したということですが・・・よくこんな試薬を見つけてくるモノだなぁと思います。

また、この種の環化反応には特に必要ないはずなのに、わざわざt-BuS-基をもつ基質で反応を行っているというのも着目すべき点に思えます。メチルアルキン型の基質で反応を行う方がより短工程になるはずです(実際)。実際彼らも、当初はそういう試行錯誤を行っていたようですが、結局は生成物がE/Z異性体の混合物になってしまったということです。


minfiensine_3.gif

このように論文を読めば、節々上手くいかなかった点を節々感じ取ることはできます。しかし外観を眺めてみると、各ステップは総じて、あまりに綺麗に進むべくして進んでいるようにしか見えません。結局つまずきは主要ストラテジー変更まで行かない程度にとどまっています。戦略的に見て全てが想定範囲内にしか見えない、というのが甚だ恐ろしい。

これだけ思った通りのことがズバズバ決まればさぞや爽快だろうなぁ・・・と、まったくため息が出るばかりの合成といえます。

 

関連文献

[1] (a)  Dounay, A. B.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2005, 127, 10186. doi: 10.1021/ja0533895 (b) Dounay, A. B.; Humphreys, P. G.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368. DOI: 10.1021/ja800163v
[2] Austin, J. F.; Kim, S.-G.; Sinz, C. S.; Xiao, W.-J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482. doi: 10.1073/pnas.0308177101
[3] Bachi, M. D.; Bar-Ner, N.; Melman, A. J. Org. Chem. 1996, 61, 7116. doi: 10.1021/jo9607875

 

 関連リンク

The MacMillan Group

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. イスラエルの化学ってどうよ?
  2. ヘテロベンザイン
  3. 岸義人先生来学
  4. 「温故知新」で医薬品開発
  5. ナイロンに関する一騒動 ~ヘキサメチレンジアミン供給寸断
  6. フルオロホルムを用いた安価なトリフルオロメチル化反応の開発
  7. 私達の時間スケールでみても、ガラスは固体ではなかった − 7年前…
  8. Mgが実現する:芳香族アミンを使った鈴木―宮浦カップリング

注目情報

ピックアップ記事

  1. 技術セミナー参加体験談(Web開催)
  2. 【マイクロ波化学(株)ウェビナー】 #環境 #SDGs マイクロ波によるサステナブルなものづくり (プラ分解、フロー合成、フィルム、乾燥、焼成)
  3. 君はホンモノの潤滑油を知っているか?:自己PRで潤滑油であることをアピールする前に中身や仕組みを知っておこう
  4. カストロ・ステファンス カップリング Castro-Stephens Coupling
  5. オレフィンメタセシス Olefin Metathesis
  6. 金属スカベンジャーを試してみた
  7. 研究室でDIY!~光反応装置をつくろう~
  8. 産学官若手交流会(さんわか)第19回ワークショップ のご案内
  9. 2つの異なるホウ素置換基が導入された非共役ジエンの触媒的合成と細胞死制御分子の形式合成に成功
  10. 「次世代医療を目指した細胞間コミュニケーションのエンジニアリング」ETH Zurich、Martin Fussenegger研より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP