[スポンサーリンク]

化学者のつぶやき

(+)-ミンフィエンシンの短工程不斉全合成

[スポンサーリンク]


Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine
Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606. doi:10.1021/ja906472m

 

プリンストン大学・MacMillanらによる報告です。

(+)-Minfiensineは上図に示すように、特徴的な高度縮環構造をもつアルカロイドであり、2005年のOvermanらによる報告[1]を始めとして幾つかのグループから不斉全合成が達成されています。

今回MacMillanらは、この複雑な骨格に対し、独自開発したMacMillan触媒を用いるアプローチを取っています。すなわち不斉Diels-Alder反応から始まるカスケード環化反応、引き続くラジカル環化反応によって、含窒素縮環構造を効果的に構築しています。

それでは詳しく見ていきましょう。


minfiensine_2.gif

まず彼らは硫黄官能基をもつトリプタミン誘導体とプロピナールを基質として用い、MacMillan触媒を用いる不斉Diels-Alder反応条件に伏しています。付加体は弱酸反応条件下において生じるイミニウムを経由してさらに環化を起こします。類似のピロロインドリン骨格の不斉合成は、以前にも彼らのグループから報告されています[2]が、今回の反応はその発展系と言えます。MacMillan触媒は付随するブレンステッド酸によって少々挙動が異なってくることが知られているのですが、今回の系ではトリブロモ酢酸付加体が良好な結果を与えたようです。

最終的にアルデヒド部位を還元処理することで、縮環ピロロインドリン骨格を96%eeという高不斉収率で得ています。この複雑中間体は、市販化合物からわずかに3段階で合成可能ということに・・・まったく驚くべき反応です。

さて、硫黄官能基を持った基質で反応を行った理由は、後のステップでこの部分をラジカル環化の足がかりとするためです。炭素伸張を行った後、通常の(n-Bu)3SnHを試薬として反応を行っていますが、どうやら上手くいかなかった模様。代わりに(t-Bu)3SnHを用いる条件[3]が機能したということですが・・・よくこんな試薬を見つけてくるモノだなぁと思います。

また、この種の環化反応には特に必要ないはずなのに、わざわざt-BuS-基をもつ基質で反応を行っているというのも着目すべき点に思えます。メチルアルキン型の基質で反応を行う方がより短工程になるはずです(実際)。実際彼らも、当初はそういう試行錯誤を行っていたようですが、結局は生成物がE/Z異性体の混合物になってしまったということです。


minfiensine_3.gif

このように論文を読めば、節々上手くいかなかった点を節々感じ取ることはできます。しかし外観を眺めてみると、各ステップは総じて、あまりに綺麗に進むべくして進んでいるようにしか見えません。結局つまずきは主要ストラテジー変更まで行かない程度にとどまっています。戦略的に見て全てが想定範囲内にしか見えない、というのが甚だ恐ろしい。

これだけ思った通りのことがズバズバ決まればさぞや爽快だろうなぁ・・・と、まったくため息が出るばかりの合成といえます。

 

関連文献

[1] (a)  Dounay, A. B.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2005, 127, 10186. doi: 10.1021/ja0533895 (b) Dounay, A. B.; Humphreys, P. G.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368. DOI: 10.1021/ja800163v
[2] Austin, J. F.; Kim, S.-G.; Sinz, C. S.; Xiao, W.-J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482. doi: 10.1073/pnas.0308177101
[3] Bachi, M. D.; Bar-Ner, N.; Melman, A. J. Org. Chem. 1996, 61, 7116. doi: 10.1021/jo9607875

 

 関連リンク

The MacMillan Group

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への…
  2. 小スケール反応での注意点 失敗しないための処方箋
  3. 世界最小!? 単糖誘導体から還元反応によって溶ける超分子ヒドロゲ…
  4. 第8回慶應有機化学若手シンポジウム
  5. C-H酸化反応の開発
  6. NMRの基礎知識【原理編】
  7. オペレーションはイノベーションの夢を見るか? その1
  8. 電子のやり取りでアセンの分子構造を巧みに制御

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 米国へ講演旅行へ行ってきました:Part II
  2. 不斉触媒 Asymmetric Catalysis
  3. 特長のある豊富な設備:ライトケミカル工業
  4. チオール架橋法による位置選択的三環性ペプチド合成
  5. 可視光を吸収する配位子を作って、配位先のパラジウムを活性化する
  6. 印象に残った天然物合成 2
  7. Lead Optimization for Medicinal Chemists
  8. 混合原子価による芳香族性
  9. 銅触媒と可視光が促進させる不斉四置換炭素構築型C-Nカップリング反応
  10. サラダ油はなぜ燃えにくい? -引火点と発火点-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

薬学会一般シンポジウム『異分野融合で切り込む!膜タンパク質の世界』

3月に入って2022年度も終わりが近づき、いよいよ学会年会シーズンになってきました。コロナ禍も終わり…

【ナード研究所】新卒採用情報(2024年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代…と、…

株式会社ナード研究所ってどんな会社?

株式会社ナード研究所(NARD)は、化学物質の受託合成、受託製造、受託研究を通じ…

マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門 -デモンストレーションで解説-

開催日:2023/04/05 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

ペプチド修飾グラフェン電界効果トランジスタを用いた匂い分子の高感度センシング

第493回のスポットライトリサーチは、東京工業大学 物質理工学院 材料系 早水研究室の本間 千柊(ほ…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 2

第一弾に引き続き第二弾。薬学会付設展示会における協賛企業とのケムステコラボキャンペーンです。…

有機合成化学協会誌2023年3月号:Cynaropicri・DPAGT1阻害薬・トリフルオロメチル基・イソキサゾール・触媒的イソシアノ化反応

有機合成化学協会が発行する有機合成化学協会誌、2023年3月号がオンライン公開されました。早…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

さて、日本化学会春季年会の付設展示会ケムステキャンペーンを3回にわたり紹介しましたが、ほぼ同時期に行…

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP