[スポンサーリンク]

化学者のつぶやき

(+)-ミンフィエンシンの短工程不斉全合成


Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine
Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606. doi:10.1021/ja906472m

 

プリンストン大学・MacMillanらによる報告です。

(+)-Minfiensineは上図に示すように、特徴的な高度縮環構造をもつアルカロイドであり、2005年のOvermanらによる報告[1]を始めとして幾つかのグループから不斉全合成が達成されています。

今回MacMillanらは、この複雑な骨格に対し、独自開発したMacMillan触媒を用いるアプローチを取っています。すなわち不斉Diels-Alder反応から始まるカスケード環化反応、引き続くラジカル環化反応によって、含窒素縮環構造を効果的に構築しています。

それでは詳しく見ていきましょう。


minfiensine_2.gif

まず彼らは硫黄官能基をもつトリプタミン誘導体とプロピナールを基質として用い、MacMillan触媒を用いる不斉Diels-Alder反応条件に伏しています。付加体は弱酸反応条件下において生じるイミニウムを経由してさらに環化を起こします。類似のピロロインドリン骨格の不斉合成は、以前にも彼らのグループから報告されています[2]が、今回の反応はその発展系と言えます。MacMillan触媒は付随するブレンステッド酸によって少々挙動が異なってくることが知られているのですが、今回の系ではトリブロモ酢酸付加体が良好な結果を与えたようです。

最終的にアルデヒド部位を還元処理することで、縮環ピロロインドリン骨格を96%eeという高不斉収率で得ています。この複雑中間体は、市販化合物からわずかに3段階で合成可能ということに・・・まったく驚くべき反応です。

さて、硫黄官能基を持った基質で反応を行った理由は、後のステップでこの部分をラジカル環化の足がかりとするためです。炭素伸張を行った後、通常の(n-Bu)3SnHを試薬として反応を行っていますが、どうやら上手くいかなかった模様。代わりに(t-Bu)3SnHを用いる条件[3]が機能したということですが・・・よくこんな試薬を見つけてくるモノだなぁと思います。

また、この種の環化反応には特に必要ないはずなのに、わざわざt-BuS-基をもつ基質で反応を行っているというのも着目すべき点に思えます。メチルアルキン型の基質で反応を行う方がより短工程になるはずです(実際)。実際彼らも、当初はそういう試行錯誤を行っていたようですが、結局は生成物がE/Z異性体の混合物になってしまったということです。


minfiensine_3.gif

このように論文を読めば、節々上手くいかなかった点を節々感じ取ることはできます。しかし外観を眺めてみると、各ステップは総じて、あまりに綺麗に進むべくして進んでいるようにしか見えません。結局つまずきは主要ストラテジー変更まで行かない程度にとどまっています。戦略的に見て全てが想定範囲内にしか見えない、というのが甚だ恐ろしい。

これだけ思った通りのことがズバズバ決まればさぞや爽快だろうなぁ・・・と、まったくため息が出るばかりの合成といえます。

 

関連文献

[1] (a)  Dounay, A. B.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2005, 127, 10186. doi: 10.1021/ja0533895 (b) Dounay, A. B.; Humphreys, P. G.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368. DOI: 10.1021/ja800163v
[2] Austin, J. F.; Kim, S.-G.; Sinz, C. S.; Xiao, W.-J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482. doi: 10.1073/pnas.0308177101
[3] Bachi, M. D.; Bar-Ner, N.; Melman, A. J. Org. Chem. 1996, 61, 7116. doi: 10.1021/jo9607875

 

 関連リンク

The MacMillan Group

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 就職か進学かの分かれ道
  2. 農工大で爆発事故発生―だが毎度のフォローアップは適切か?
  3. 糖鎖クラスター修飾で分子の生体内挙動を制御する
  4. 2009年人気記事ランキング
  5. 「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・K…
  6. 第95回日本化学会付設展示会ケムステキャンペーン!Part II…
  7. 【追悼企画】世のためになる有機合成化学ー松井正直教授
  8. おまえら英語よりもタイピングやろうぜ ~中級編~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 武田薬の糖尿病治療薬、心臓発作を予防する効果も
  2. CSJカレントレビューシリーズ書評
  3. エド・ボイデン Edward Boyden
  4. 三共・第一製薬の完全統合、半年程度前倒しを検討
  5. ルィセンコ騒動のはなし(後編)
  6. Micro Flow Reactorで瞬間的変換を達成する
  7. ジャクリン・バートン Jacqueline K. Barton
  8. “研究者”人生ゲーム
  9. 旭化成ファインケム、新規キラルリガンド「CBHA」の工業化技術を確立し試薬を販売
  10. エチオ・リザード Ezio Rizzardo

関連商品

注目情報

注目情報

最新記事

「人工知能時代」と人間の仕事

デジタル技術の進歩は著しく、特に、人工知能(AI)と呼ばれる機械学習システムの進歩は、世界の労働者の…

特定の刺激でタンパク質放出速度を制御できるスマート超分子ヒドロゲルの開発

第134回のスポットライトリサーチは、京都大学大学院 工学研究科 合成·生物化学専攻 浜地研究室の重…

有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成

有機合成化学協会が発行する有機合成化学協会誌、2018年1月号が昨日オンライン公開されました。…

アミン化合物をワンポットで簡便に合成 -新規還元的アミノ化触媒-:関東化学

アミン化合物は医薬品、農薬などの生理活性物質をはじめ、ポリマーなどの工業材料に至るまで様々な化学物質…

独自の有機不斉触媒反応を用いた (—)-himalensine Aの全合成

近年単離されたアルカロイド(—)-himalensine Aの全合成に初めて成功した。独自開発した二…

究極の脱水溶媒 Super2(スーパー スクエア):関東化学

この度、関東化学株式会社は水分1ppm以下を保証する脱水溶媒を発売開始致します。この水分保証…

Chem-Station Twitter

PAGE TOP