[スポンサーリンク]

一般的な話題

ケージ内で反応を進行させる超分子不斉触媒

[スポンサーリンク]

Raymond_asymSupra_3.gif

Enantioselective Catalysis of the Aza-Cope Rearrangement by a Chiral Supramolecular Assembly
Brown, C. J.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2009, ASAP. doi:10.1021/ja906386w

現在の化学界におけるホットトピック・超分子ケージ錯体。
「つぶやき」でも幾つか先端の研究例を紹介していますが、いずれの例でも外界から隔絶された特異空間を活用した化学が展開されています。

Kenneth Raymond(UC Berkeley)らのグループは今回、それをアザ-Cope転位の不斉触媒として用いることに成功しました。

  • 触媒原理

以下に示す四面体形状をもつアニオン性超分子錯体は、アザ-Cope転位反応の触媒として働きます。これは既にアキラルな系で示されています[1]。触媒非添加条件に比べ、約1000倍の反応加速効果があるとされます。

complex_raymond.gifこの超分子触媒系では、錯体が作り出す空間内に基質を取り込み、特定の配座に強制誘導してやることが反応促進のカギとなっています。

すなわち、基質が錯体内部に取り込まれると、狭いスペースに押し込められるために、曲がった配座をとることを余儀なくされます。Cope転位に必要となる六員環遷移状態に近い形状となり、すぐさま反応が進行します。反応後は、系中に存在するアンモニウムカチオンと置き換わり、基質が放出されます。放出された基質は加水分解を受けて中性分子となり、アニオン性ケージにはもはや取り込まれなくなります(下図)。

Raymond_asymSupra_1.gif
一方、ホストに取り込まれない状態では、主に直線的に伸びた形で存在しています。六員環遷移状態を取るのに要するエネルギー障壁が大きく、触媒のある場合に比べ反応は遅くなる、という理屈です。

特定の官能基に作用する、よくある酸/塩基型の活性化形式ではないため、原理的に大変穏和な触媒反応となり得るのも特徴です。

  • アキラルからキラルへ
さて、この超分子ケージを構成要素たる配位子自身は、キラリティを持たない(アキラルな)ものです。しかし面白いことに、ひとたび錯形成がなされるとキラリティを持つようになります。

complex_LDchirality.gif
以前の報告[1]では、ラセミ錯体(ΔΔΔΔ錯体とΛΛΛΛ錯体の1:1混合物)を用いて反応を行っていましたが、今回の報告では両エナンチオマーを分離して用い、冒頭スキームのような不斉反応へと展開しています。錯体ホスト内でのキラル空間で転位反応が起こるため、エナンチオ選択性が発現してきます。

やはり「キラル錯体をどのように調製・単離精製するか」という点に苦心の跡が見られるようです。ラセミ体で合成した跡、そのあとキラルな四級アンモニウム塩((-)-N‘-methylnicotinium iodide)をケージに取り込ませてジアステレオマー錯体とした後に、イオン交換クロマトグラフィにて分離しています。泥臭いやりかたですが、そういう側面はどんな仕事にもあるものですね。

※各種模式図はRaymond Groupもしくは冒頭論文より引用・改変
  • 関連文献
[1] (a) Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem. Int. Ed. 2004, 43, 6748. (b) Fiedler, D.; van Halbeek, H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 10240. (c) Hastings, C. J.; Fiedler, D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2008, 130, 10977.

  • 関連リンク

Raymond Group UCバークレイ・レイモンド研究室

Ken Raymond  – Wikipedia

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【速報】2017年のノーベル生理学・医学賞は「概日リズムを制御す…
  2. クロスカップリング反応にかけた夢:化学者たちの発見物語
  3. 過ぎ去りし器具への鎮魂歌
  4. ものごとを前に進める集中仕事術「ポモドーロ・テクニック」
  5. 172番元素までの周期表が提案される
  6. 不安定化合物ヒドロシランをうまくつくる方法
  7. 電気化学と金属触媒をあわせ用いてアルケンのジアジド化を制す
  8. 化学研究ライフハック: 研究現場のGTD式タスク管理 ①

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アルキンジッパー反応 Alkyne Zipper Reaciton
  2. 地域の光る化学企業たち-1
  3. iPhone7は世界最強の酸に耐性があることが判明?
  4. 安全なジアゾ供与試薬
  5. NEC、デスクトップパソコンのデータバックアップが可能な有機ラジカル電池を開発
  6. ジブロモインジゴ dibromoindigo
  7. PACIFICHEM2010に参加してきました!Final!
  8. 理化学研究所が新元素発見 名前は「リケニウム」?
  9. ユニークな名前を持つ配位子
  10. Corey系譜β版

関連商品

注目情報

注目情報

最新記事

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2020年1月より、数々のヒット作に出演し、…

tRNAの新たな役割:大豆と微生物のコミュニケーション

畑に生えている大豆の根っこを抜いてみると、丸い粒みたいなものがたくさんできています。根粒(こんりゅう…

第46回―「分子レベルの情報操作を目指す」Howard Colquhoun教授

第46回の海外化学者インタビューは、ハワード・コルクホーン教授です。英国レディング大学の化学科に所属…

Chem-Station Twitter

PAGE TOP