[スポンサーリンク]

一般的な話題

ケージ内で反応を進行させる超分子不斉触媒

Raymond_asymSupra_3.gif

Enantioselective Catalysis of the Aza-Cope Rearrangement by a Chiral Supramolecular Assembly
Brown, C. J.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2009, ASAP. doi:10.1021/ja906386w

現在の化学界におけるホットトピック・超分子ケージ錯体。
「つぶやき」でも幾つか先端の研究例を紹介していますが、いずれの例でも外界から隔絶された特異空間を活用した化学が展開されています。

Kenneth Raymond(UC Berkeley)らのグループは今回、それをアザ-Cope転位の不斉触媒として用いることに成功しました。

  • 触媒原理

以下に示す四面体形状をもつアニオン性超分子錯体は、アザ-Cope転位反応の触媒として働きます。これは既にアキラルな系で示されています[1]。触媒非添加条件に比べ、約1000倍の反応加速効果があるとされます。

complex_raymond.gifこの超分子触媒系では、錯体が作り出す空間内に基質を取り込み、特定の配座に強制誘導してやることが反応促進のカギとなっています。

すなわち、基質が錯体内部に取り込まれると、狭いスペースに押し込められるために、曲がった配座をとることを余儀なくされます。Cope転位に必要となる六員環遷移状態に近い形状となり、すぐさま反応が進行します。反応後は、系中に存在するアンモニウムカチオンと置き換わり、基質が放出されます。放出された基質は加水分解を受けて中性分子となり、アニオン性ケージにはもはや取り込まれなくなります(下図)。

Raymond_asymSupra_1.gif
一方、ホストに取り込まれない状態では、主に直線的に伸びた形で存在しています。六員環遷移状態を取るのに要するエネルギー障壁が大きく、触媒のある場合に比べ反応は遅くなる、という理屈です。

特定の官能基に作用する、よくある酸/塩基型の活性化形式ではないため、原理的に大変穏和な触媒反応となり得るのも特徴です。

  • アキラルからキラルへ
さて、この超分子ケージを構成要素たる配位子自身は、キラリティを持たない(アキラルな)ものです。しかし面白いことに、ひとたび錯形成がなされるとキラリティを持つようになります。

complex_LDchirality.gif
以前の報告[1]では、ラセミ錯体(ΔΔΔΔ錯体とΛΛΛΛ錯体の1:1混合物)を用いて反応を行っていましたが、今回の報告では両エナンチオマーを分離して用い、冒頭スキームのような不斉反応へと展開しています。錯体ホスト内でのキラル空間で転位反応が起こるため、エナンチオ選択性が発現してきます。

やはり「キラル錯体をどのように調製・単離精製するか」という点に苦心の跡が見られるようです。ラセミ体で合成した跡、そのあとキラルな四級アンモニウム塩((-)-N‘-methylnicotinium iodide)をケージに取り込ませてジアステレオマー錯体とした後に、イオン交換クロマトグラフィにて分離しています。泥臭いやりかたですが、そういう側面はどんな仕事にもあるものですね。

※各種模式図はRaymond Groupもしくは冒頭論文より引用・改変
  • 関連文献
[1] (a) Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem. Int. Ed. 2004, 43, 6748. (b) Fiedler, D.; van Halbeek, H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 10240. (c) Hastings, C. J.; Fiedler, D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2008, 130, 10977.

  • 関連リンク

Raymond Group UCバークレイ・レイモンド研究室

Ken Raymond  – Wikipedia

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. whileの使い方
  2. 「超分子ポリマーを精密につくる」ヴュルツブルク大学・Würthn…
  3. (+)-ゴニオトキシンの全合成
  4. Newton別冊「注目のスーパーマテリアル」が熱い!
  5. 化学探偵Mr.キュリー7
  6. 化学Webギャラリー@Flickr 【Part1】
  7. 学生・ポスドクの方、ちょっとアメリカ旅行しませんか?:SciFi…
  8. 不安定化合物ヒドロシランをうまくつくる方法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ビンゲル反応 Bingel Reaction
  2. フラクタルな物質、見つかる
  3. 人と人との「結合」を「活性化」する
  4. 海外で働いている僕の体験談
  5. 2016年8月の注目化学書籍
  6. ゲルセジン型アルカロイドの網羅的全合成
  7. ニコラウ祭り
  8. 武田薬の糖尿病治療薬、心臓発作を予防する効果も
  9. 学部生にオススメ:「CSJ カレントレビュー」で最新研究をチェック!
  10. プラトー反応 Prato Reaction

関連商品

注目情報

注目情報

最新記事

ウラジミール・ゲヴォルギャン Vladimir Gevorgyan

ウラジミール・ゲヴォルギャン(Vladimir Gevorgyan、1956年8月12日-)は、アメ…

有機合成化学協会誌2018年11月号:オープンアクセス・英文号!

有機合成化学協会が発行する有機合成化学協会誌、2018年11月号がオンライン公開されました。今月…

観客が分泌する化学物質を測定することで映画のレーティングが可能になるかもしれない

映画には、年齢による鑑賞制限が設けられているものがあります。その制限は映画の内容に応じて各国の審査団…

庄野酸化 Shono Oxidation

概要アルコール溶媒中にアミドまたはカルバメートを電解酸化し、N,O-アセタールを得る反応。アミン…

ゲルセジン型アルカロイドの網羅的全合成

ゲルセジン型アルカロイドを網羅的に合成する手法が開発された。巧みな短工程骨格構築法により4種類の同ア…

3級C-H結合選択的な触媒的不斉カルベン挿入反応

2017年、エモリー大学・Huw M. L. Daviesらは独自に設計した不斉二核ロジウム触媒を用…

PAGE TOP