[スポンサーリンク]

化学者のつぶやき

タンパク質の定量法―紫外吸光法 Protein Quantification – UV Absorption

[スポンサーリンク]

原理

タンパク質中には紫外光を吸収するアミノ酸残基が含まれる。特にチロシン・トリプトファンの側鎖に由来する吸収が280 nm付近に存在する。バッファーにはこの付近に吸収をもつものが少ないため、この吸光度(A280)を計測することで、Lambert-Beerの法則に基づく濃度定量が行える。A280 = 1.0 (l =1 cm)のとき、タンパク質濃度が概ね1 mg/mLであるとして計算する。

実際にはタンパク質毎にチロシン・トリプトファン含有量が異なるので、この方法は厳密ではないが、簡便かつすぐに測定でき、サンプルを回収出来る点で価値が高い。

長所

  • サンプルの回収・再利用が可能
  • 操作が簡単で迅速

短所

  • 測定範囲は0.05-2 mg/mL、感度は比較的低い
  • 芳香族アミノ酸を持たないタンパク質(コラーゲンなど)は定量できない
  • タンパク質によって吸光度が異なる
  • 紫外吸収を持つ物質の混入は測定を妨害する[2]

(画像はこちらより引用)

 

測定上の注意点・コツ

  • とくにヌクレオチド類は260~280 nmに吸収をもつので注意が必要となる。A280/A260<1.5になると核酸の混入が疑われるため、他の方法を検討する。少量であれば下記補正式で濃度算出が可能である[3]

タンパク質濃度 [mg/mL] = 1.55 x A280 – 0.76 x A260

(画像はこちらから引用)

  • 紫外吸収測定用のサンプルセルは石英製を使う。プラスチック・ガラスは適さない。
  • Nanodropと呼ばれる装置をもちいることで、1-2μL程度の液量で測定可能。
  • 280 nmにおけるモル吸光係数(ε280)は、トリプトファン・チロシン・システイン二量体(シスチン)の含有量から、下記の式で計算可能である[4]こちらのサイトに一次配列を打ち込むことでも計算できる。

    ϵ280 [M-1cm-1]= nW x 5,500 + nY x 1,490 + nC x 125 (C = cystine)

関連動画

参考文献

  1. ”総タンパク質の定量法” 鈴木祥夫、ぶんせき 2018, 1, 2. [PDF]
  2. “[6] Quantification of protein” Stoscheck, C. M. Methods Enzymol. 1990, 182, 50. doi:10.1016/0076-6879(90)82008-P
  3. ”Isolation and Crystallization of Enolase” Warburg, O.; Christian W. Biochem. Z. 1942, 310, 384.
  4. “How to measure and predict the molar absorption coefficient of a protein” Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. Protein Sci. 1995, 4, 2411. doi:10.1002/pro.5560041120

関連書籍

Molecular Cloning: A Laboratory Manual, Fourth Edition (3-Volume Set)

Molecular Cloning: A Laboratory Manual, Fourth Edition (3-Volume Set)

Green, Michael R., Sambrook, Joseph
¥44,500(as of 07/26 14:30)
Amazon product information

ケムステ関連記事

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. SciFinder Future Leaders in Chem…
  2. 第15回日本化学連合シンポジウム「持続可能な社会構築のための見分…
  3. ナノチューブを簡単にそろえるの巻
  4. ケムステ版・ノーベル化学賞候補者リスト【2020年版】
  5. 科学カレンダー:学会情報に関するお役立ちサイト
  6. 科学とは「未知への挑戦」–2019年度ロレアル-ユネスコ女性科学…
  7. 研究費総額100万円!2050年のミライをつくる若手研究者を募集…
  8. 特長のある豊富な設備:ライトケミカル工業

注目情報

ピックアップ記事

  1. ドナルド・トゥルーラー Donald G. Truhlar
  2. 赤﨑 勇 Isamu Akasaki
  3. 製品開発職を検討する上でおさえたい3つのポイント
  4. 住友化・大日本住友薬、ファイザーと高血圧症薬で和解
  5. 研究者・開発者に必要なマーケティング技術と活用方法【終了】
  6. 細胞が分子の3Dプリンターに?! -空気に触れるとファイバーとなるタンパク質を細胞内で合成-
  7. 【速報】ノーベル化学賞2013は「分子動力学シミュレーション」に!
  8. 第81回―「均一系高分子重合触媒と生分解性ポリマーの開発」奥田 純 教授
  9. 旭化成ファインケム、新規キラルリガンド「CBHA」の工業化技術を確立し試薬を販売
  10. ライセルト インドール合成 Reissert Indole Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP