[スポンサーリンク]

化学者のつぶやき

タンパク質の定量法―紫外吸光法 Protein Quantification – UV Absorption

[スポンサーリンク]

原理

タンパク質中には紫外光を吸収するアミノ酸残基が含まれる。特にチロシン・トリプトファンの側鎖に由来する吸収が280 nm付近に存在する。バッファーにはこの付近に吸収をもつものが少ないため、この吸光度(A280)を計測することで、Lambert-Beerの法則に基づく濃度定量が行える。A280 = 1.0 (l =1 cm)のとき、タンパク質濃度が概ね1 mg/mLであるとして計算する。

実際にはタンパク質毎にチロシン・トリプトファン含有量が異なるので、この方法は厳密ではないが、簡便かつすぐに測定でき、サンプルを回収出来る点で価値が高い。

長所

  • サンプルの回収・再利用が可能
  • 操作が簡単で迅速

短所

  • 測定範囲は0.05-2 mg/mL、感度は比較的低い
  • 芳香族アミノ酸を持たないタンパク質(コラーゲンなど)は定量できない
  • タンパク質によって吸光度が異なる
  • 紫外吸収を持つ物質の混入は測定を妨害する[2]

(画像はこちらより引用)

 

測定上の注意点・コツ

  • とくにヌクレオチド類は260~280 nmに吸収をもつので注意が必要となる。A280/A260<1.5になると核酸の混入が疑われるため、他の方法を検討する。少量であれば下記補正式で濃度算出が可能である[3]

タンパク質濃度 [mg/mL] = 1.55 x A280 – 0.76 x A260

(画像はこちらから引用)

  • 紫外吸収測定用のサンプルセルは石英製を使う。プラスチック・ガラスは適さない。
  • Nanodropと呼ばれる装置をもちいることで、1-2μL程度の液量で測定可能。
  • 280 nmにおけるモル吸光係数(ε280)は、トリプトファン・チロシン・システイン二量体(シスチン)の含有量から、下記の式で計算可能である[4]こちらのサイトに一次配列を打ち込むことでも計算できる。

    ϵ280 [M-1cm-1]= nW x 5,500 + nY x 1,490 + nC x 125 (C = cystine)

関連動画

参考文献

  1. ”総タンパク質の定量法” 鈴木祥夫、ぶんせき 2018, 1, 2. [PDF]
  2. “[6] Quantification of protein” Stoscheck, C. M. Methods Enzymol. 1990, 182, 50. doi:10.1016/0076-6879(90)82008-P
  3. ”Isolation and Crystallization of Enolase” Warburg, O.; Christian W. Biochem. Z. 1942, 310, 384.
  4. “How to measure and predict the molar absorption coefficient of a protein” Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. Protein Sci. 1995, 4, 2411. doi:10.1002/pro.5560041120

関連書籍

Molecular Cloning: A Laboratory Manual, Fourth Edition (3-Volume Set)

Molecular Cloning: A Laboratory Manual, Fourth Edition (3-Volume Set)

Green, Michael R., Sambrook, Joseph
¥44,500(as of 11/15 20:41)
Amazon product information

ケムステ関連記事

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. スタニルリチウム調製の新手法
  2. 薬学会一般シンポジウム『異分野融合で切り込む!膜タンパク質の世界…
  3. C-H酸化反応の開発
  4. 光化学と私たちの生活そして未来技術へ
  5. アノードカップリングにより完遂したテバインの不斉全合成
  6. ヒュッケル法(後編)~Excelでフラーレンの電子構造を予測して…
  7. フリー素材の化学イラストを使ってみよう!
  8. 転職でチャンスを掴める人、掴めない人の違い

注目情報

ピックアップ記事

  1. 英文読解の負担を減らすマウスオーバー辞書
  2. シンガポールへ行ってきた:NTUとNUS化学科訪問
  3. 【書籍】セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–
  4. ケミカルバイオロジー chemical biology
  5. 銀ジャケを狂わせた材料 ~タイヤからの意外な犯人~
  6. 仏サノフィ・アベンティス、第2・四半期は6.5%増収
  7. メタンハイドレートの化学
  8. 茅幸二、鈴木昭憲、田中郁三ら文化功労者に
  9. ジョン・アンソニー・ポープル Sir John Anthony Pople
  10. 熱分析 Thermal analysis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP