[スポンサーリンク]

天然物

ヘロナミドA Heronamide A

[スポンサーリンク]

heronamideA

ヘロナミドA

ヘロナミド (Heronamide)は、オーストラリアのヘーロン島近くの海で採取された放線菌が生産するマクロラクタム化合物である[1]。細胞毒性抗増殖作用がある。
ポリエン系マクロラクタムは、立体化学の決定が難しいことでも知られており、ヘロナミドAは、後に構造訂正が行なわれた[2]

ヘロナミドAは、ポリエン系化合物であるヘロナミドCが環化することによって生成する。しかし、環化の仕方には、2通りが考えられ、どちらが正しい経路かについては、謎とされていた。

heronamideA_scheme22つの反応経路

計算化学による環化メカニズムの解明

Kendal Houkらは、Heronamide Aの環化メカニズムについて、DFT計算を行なった3。非常に興味深いことに、Heronamide Aの環化は[6+4]も[4+2]も同様の遷移状態構造をとっていることが明らかとなった。遷移状態から生成物へと進む過程で経路が途中で枝分かれ(bifurcate)しているため、二つの生成物が得られる。これは、計算化学の分野で非常に注目を集めているValley-ridge Inflection(VRI)というものに関係している。

heronamideA_scheme

図は、文献3より抜粋

通常、遷移状態では虚振動をひとつのみ持つためIRC計算により生成物はひとつに決まる。しかし、遷移状態から生成物へと進む過程でValley-ridge Transition point (VRT)が存在する場合、別の方向への虚振動が発生し、生成物が二つ得られる。二つの反応経路に関して遷移状態が1つと聞くと違和感を覚えるかもしれないが、厳密には[6+4]と[4+2]の遷移状態は異なる。しかし、二つの遷移状態構造が非常に近い場合、その間のエネルギポテンシャル曲面上の谷は無視できることになり、同じ遷移状態と見なすことが出来る。

計算結果からは、[6+4]と[4+2]のふたつの生成物が得られているが、実験結果では[6+4]の生成物しか得られていない。これは、[4+2]の環化生成物がCope転位を起こすことにより、より安定な[6+4]の環化生成物へと変化しているためだと考えられた。実際、このCope転位の活性化エネルギーは24.3 kcal/molと低く、室温で十分進行し得ると考えられる。

 

参考文献

1. Raju, R.; Piggott, A. M.; Coute, M. M.; Capon, R. J. Org. Biomol. Chem. 2010, 8, 4682. DOI: 10.1039/C0OB00267D
2. Sugiyama, R.; Nishimura, S.; Kakeya, H. Tetrahedron Lett. 2013, 54, 1531. 10.1016/j.tetlet.2013.01.012
3. Transannular [6 + 4] and Ambimodal Cycloaddition in the Biosynthesis of Heronamide A” Yu, P.; Patel, A.; Houk, K. N. J. Am. Chem. Soc. 2015, 137, 13518. DOI: 10.1021/jacs.5b06656
4. Rehbein, J.; Carpenter, B. K. Phys. Chem. Chem. Phys. 2011, 13, 20906. DOI: 10.1039/C1CP22565K
5. Bofill, J. M.; Quapp, W. J. Math. Chem. 2013, 51, 1099.
6. Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Int. J. Quantum Chem. 2015, 115, 258.

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. リベロマイシンA /Reveromycin A
  2. ファイトスルフォカイン (phytosulfokine)
  3. レスベラトロール /resveratrol
  4. ピラーアレーン
  5. ポリ乳酸 Polylactic Acid
  6. ロピニロールのメディシナルケミストリー -iPS創薬でALS治療…
  7. アピオース apiose
  8. アクリルアミド /acrylamide

注目情報

ピックアップ記事

  1. 専門用語豊富なシソーラス付き辞書!JAICI Science Dictionary
  2. 世界最大級のマススペクトルデータベース「Wiley Registry」
  3. 高圧ガス甲種化学 受験体験記① ~概要・申し込み~
  4. Stadtfriedhof (ゲッチンゲン市立墓地)
  5. 【6月開催】第九回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の密着性向上剤としての利用 -添加剤としての利用-
  6. オカモトが過去最高益を記録
  7. ゲームプレイヤーがNatureの論文をゲット!?
  8. 不安定化合物ヒドロシランをうまくつくる方法
  9. 二酸化塩素と光でプラスチック表面を機能化
  10. レビュー多くてもよくね?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP