[スポンサーリンク]

天然物

ヘロナミドA Heronamide A

[スポンサーリンク]

heronamideA

ヘロナミドA

ヘロナミド (Heronamide)は、オーストラリアのヘーロン島近くの海で採取された放線菌が生産するマクロラクタム化合物である[1]。細胞毒性抗増殖作用がある。
ポリエン系マクロラクタムは、立体化学の決定が難しいことでも知られており、ヘロナミドAは、後に構造訂正が行なわれた[2]

ヘロナミドAは、ポリエン系化合物であるヘロナミドCが環化することによって生成する。しかし、環化の仕方には、2通りが考えられ、どちらが正しい経路かについては、謎とされていた。

heronamideA_scheme22つの反応経路

計算化学による環化メカニズムの解明

Kendal Houkらは、Heronamide Aの環化メカニズムについて、DFT計算を行なった3。非常に興味深いことに、Heronamide Aの環化は[6+4]も[4+2]も同様の遷移状態構造をとっていることが明らかとなった。遷移状態から生成物へと進む過程で経路が途中で枝分かれ(bifurcate)しているため、二つの生成物が得られる。これは、計算化学の分野で非常に注目を集めているValley-ridge Inflection(VRI)というものに関係している。

heronamideA_scheme

図は、文献3より抜粋

通常、遷移状態では虚振動をひとつのみ持つためIRC計算により生成物はひとつに決まる。しかし、遷移状態から生成物へと進む過程でValley-ridge Transition point (VRT)が存在する場合、別の方向への虚振動が発生し、生成物が二つ得られる。二つの反応経路に関して遷移状態が1つと聞くと違和感を覚えるかもしれないが、厳密には[6+4]と[4+2]の遷移状態は異なる。しかし、二つの遷移状態構造が非常に近い場合、その間のエネルギポテンシャル曲面上の谷は無視できることになり、同じ遷移状態と見なすことが出来る。

計算結果からは、[6+4]と[4+2]のふたつの生成物が得られているが、実験結果では[6+4]の生成物しか得られていない。これは、[4+2]の環化生成物がCope転位を起こすことにより、より安定な[6+4]の環化生成物へと変化しているためだと考えられた。実際、このCope転位の活性化エネルギーは24.3 kcal/molと低く、室温で十分進行し得ると考えられる。

 

参考文献

1. Raju, R.; Piggott, A. M.; Coute, M. M.; Capon, R. J. Org. Biomol. Chem. 2010, 8, 4682. DOI: 10.1039/C0OB00267D
2. Sugiyama, R.; Nishimura, S.; Kakeya, H. Tetrahedron Lett. 2013, 54, 1531. 10.1016/j.tetlet.2013.01.012
3. Transannular [6 + 4] and Ambimodal Cycloaddition in the Biosynthesis of Heronamide A” Yu, P.; Patel, A.; Houk, K. N. J. Am. Chem. Soc. 2015, 137, 13518. DOI: 10.1021/jacs.5b06656
4. Rehbein, J.; Carpenter, B. K. Phys. Chem. Chem. Phys. 2011, 13, 20906. DOI: 10.1039/C1CP22565K
5. Bofill, J. M.; Quapp, W. J. Math. Chem. 2013, 51, 1099.
6. Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Int. J. Quantum Chem. 2015, 115, 258.

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. カフェイン caffeine
  2. アスパルテーム /aspartame
  3. カスガマイシン (kasugamycin)
  4. フェノールフタレイン ふぇのーるふたれいん phenolphth…
  5. プロリン ぷろりん proline
  6. シラフィン silaffin
  7. バニリン /Vanillin
  8. 虫歯とフッ素のお話② ~歯磨き粉のフッ素~

注目情報

ピックアップ記事

  1. 高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–
  2. クラウド版オフィススイートを使ってみよう
  3. 「水素水」健康効果うたう表示は問題 国民生活センターが業者に改善求める
  4. 銀の殺菌効果がない?銀耐性を獲得するバシラス属菌
  5. 高分子材料におけるマテリアルズ・インフォマティクスの活用:高分子シミュレーションの応用
  6. ジャスティン・デュボア Justin du Bois
  7. 半導体で水から水素 クリーンエネルギーに利用
  8. 米ファイザーの第3・四半期決算は52%減益
  9. 1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスファート:1-Butyl-3-methylimidazolium Hexafluorophosphate
  10. 分子の自己集合プロセスを多段階で制御することに成功 ―分子を集めて数百ナノメートルの高次構造を精密合成―

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP