[スポンサーリンク]

化学者のつぶやき

メソポーラスシリカ(1)

近頃(昔から?)頻繁にJACSやAngewanteでも目にするようになったメソポーラス(mesoporous)の文字。メソポーラス材料と言えばそのままメソ(サイズの径の孔を持つ)ポーラス(=多孔質)材料のことですが、例えば「メソって何よメソって?」なんていう疑問をお持ちの方は案外多いのではないでしょうか。そんな疑問を解決しながら、とりわけメソポーラスシリカ(構成元素が二酸化ケイ素)について簡単に書いてみます。

  • メソとは

先述の疑問に早速答えてしまいます。IUPACの規定によると、2?50nmの領域をメソと呼ぶそうです(図1)[3]追記。それ以下をマイクロ、それ以上をマクロ領域と呼ぶのが一応の決まりだそうですが、例えば高分子化学におけるマイクロエマルション重合では100nm以下のミセルを用いればこれをマイクロエマルションと呼ぶそうですから、慣れるまでは少々ややこしいかもしれません。
ともかく、これでメソポーラス材料とは「直径が2~50nmの微細孔を持つ多孔性材料の総称であることがわかりました。



図1

  • メソポーラスであることのウリ

天然にも多く存在する(が故にその研究の歴史は長く、錬金術の時代から?すでに研究対象であった)ゼオライトは、そのマイクロ孔の小ささ故に、小さな分子(水、メタン、ベンゼン等)しか孔の中に入れないという制限がありました。(無論、孔の中ではなく外側の表面はアクセス可能なわけですが)これに対して、メソポーラス材料はその十分に大きなメソ孔のサイズ故に、多くの化合物を孔の中に導入することができます。多彩な化合物が入れるということは、つまり孔の中で多彩な反応を扱うことも可能となるわけで、この特徴を活かした不均一系反応場としての応用や(表面)修飾の容易さこそが、マイクロポーラス材料に無くてメソポーラス材料にある魅力の一つだと思います。

  • メソポーラスシリカの合成(1)FSM-16



図2. (参考文献[2]より)
1990年に早稲田大学の加藤忠蔵教授の(現在は黒田一幸教授が率いておられる)グループにより、層状ケイ酸塩の一種であるカネマイト(kanemite)に含まれるNa+を、イオン交換によりアルキルトリメチルアンモニウムイオン(界面活性剤でカウンターイオンがブロマイドおよびクロライドのものが市販されている、アルキル鎖の炭素数=12?20。CTAB(しーたぶ)※追記など。)と置き換え、これを焼成(calcination、500oC超の高温釜で焼くこと。)することにより有機物を分解除去することで、高表面積(?1000m2/g)かつ細孔径分布が狭い(?2nm)シリカ材料を得られることが報告されました[1]。その後、同グループの黒田教授と豊田中央研究所の稲垣伸二氏らにより、反応条件の最適化によって上記の3Dイメージ画像のような蜂の巣型構造(2Dヘキサゴナル、p6mm)が得られることが報告され[2]、この材料はその構造の生成機構からFSM-16(Folded Sheet Material)と呼ばれています。…(ここまで書いておいて何ですが、この「16」の由来をご存知の方は居らっしゃいますか?ひょっとしてただのサンプル番号か何か…)

続きます

  • 関連文献
[1] Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. 1990, 63, 988. DOI:10.1246/bcsj.63.988.
[2] Inagaki, S.; Fukushima, Y.; Kuroda, K. J. Chem. Soc., Chem. Commun. 1993, 8, 680. DOI: 10.1039/C39930000680
後日追記
[3] Everette, D. H. Pure Appl. Chem. 1972, 31, 577. DOI:10.1351/pac197231040577

IUPAC Gold Book URL:  http://goldbook.iupac.org/M03853.html

※追記
CTABはCetyl Trimethyl Ammonium Bromideの略で、これはアルキル鎖の炭素数が16の界面活性剤ですが、炭素数が異なるものでもCTABもしくはCnTAB(n=炭素数)と表記し、特に口頭ではCTAB(しーたぶ)とだけ言う場合が多いです(実は日本人とこの分野の会話をしたことが無く、北米人の慣習しか知らないのですが)。

The following two tabs change content below.
せきとも

せきとも

他人のお金で海外旅行もとい留学を重ね、現在カナダの某五大湖畔で院生。かつては専ら有機化学がテーマであったが、現在は有機無機ハイブリッドのシリカ材料を扱いつつ、高分子化学に

関連記事

  1. アルケンの実用的ペルフルオロアルキル化反応の開発
  2. 図に最適なフォントは何か?
  3. 【予告】ケムステ新コンテンツ「元素の基本と仕組み」
  4. 不斉Corey-Chaykovskyエポキシド合成を鍵としたキニ…
  5. 反応がうまくいかないときは冷やしてみてはいかが?
  6. 有合化若手セミナーに行ってきました
  7. メソポーラスシリカ(2)
  8. フラーレンの中には核反応を早くする不思議空間がある

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 市川アリルシアナート転位 Ichikawa Allylcyanate Rearrangement
  2. お”カネ”持ちな会社たちー2
  3. 芳香族化合物のニトロ化 Nitration of Aromatic Compounds
  4. チエナマイシン /thienamycin
  5. 安定な環状ケトンのC–C結合を組み替える
  6. UCリアクター「UCR-150N」:冷媒いらずで-100℃!
  7. 耐薬品性デジタルマノメーター:バキューブランド VACUU・VIEW
  8. 研究者・開発者に必要なマーケティング技術と活用方法【終了】
  9. ベンジジン転位 Benzidine Rearrangement
  10. アメリカへ博士号をとりにいく―理系大学院留学奮戦記

関連商品

注目情報

注目情報

最新記事

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

アントニオ・M・エチャヴァレン Antonio M. Echavarren

アントニオ・M・エチャヴァレン(Antonio M. Echavarren、1955年3月25日–)…

PAGE TOP