[スポンサーリンク]

化学者のつぶやき

本当の天然物はどれ?

[スポンサーリンク]

今回は天然物合成の分野から、なかなか複雑なケースが報告されていたため紹介します。なにが複雑かというと、その構造ではなくて、どれが本当の天然物なの?ということです。

 槍玉に挙がったTerpestacin

  Terpestacin(1)は1993年OkaらによりArthrinium sp. から単離された血管新生阻害作用を有する天然物です [1]。炭素15員環を含むユニークな構造から、10年以上にわたって合成化学者の格好の合成標的になっています(図1)。この天然物が単離・構造決定された当初、相対・絶対立体配置は1として決定されていました。そこで、多くの合成化学者は1の構造を信じてこの天然物を合成を行うこととなります。

realnp_1

構造決定の推移

Okaらは単離したTerpestacin(1)の旋光度を+26(CHCl3)と報告していました。同年にRandrazzoらにより1の1級水酸基がアセチル化されたFusaproliferin(3)が単離されました。しかし1995年にSarntiniらによってこの3はTerpestacin(1)のC23位エピマーであると訂正されました。

その3年後、早稲田大学の竜田らは、1の初の全合成を報告しました [2]。旋光度も+27と報告値と同等であることから、天然物と同じ絶対立体配置で合成したと結論づけています。

図1:構造決定の推移 (出典:T. F. Jamison et al., J. Am. Chem .Soc. 126, 10682 (2004).)

さらにその3年後、Grafeらは1の構造を有しつつ、旋光度が-16.5である天然物を単離しました。絶対値が若干異なりますが、旋光度の符号が逆ということで、1のエナンチオマーとして報告しました。ここまでの話は簡単で、すべて正しいように思えます。

しかし、2002年にMyers13の不斉全合成を行ったところ、得られた1の旋光度の符号はマイナスを示してしまいました [3]。そこで、Myersらはこの旋光度の違いを考察し、Okaと竜田らは旋光度を測定する際のCHCl3を炭酸カリウムで処理した際に炭酸カリウムが混入しており、それにより1がクロロエーテル化され旋光度がプラスになってのではないか、と報告しました。

うーん、そんなことがあるのだろうか?そういうこともあるのだろう・・・と、この話は一つの結論に達したように思えました。

 ところが、さらに同年Miyagawaらにより1のC11位エピマー(2)とされる「siccanol」が単離されました。そこでJamisonらが12を合成し、Miyagawaらの「siccanol」のスペクトル値と比較したところ、「siccanol」の構造は2ではないことがわかりました。

??どういうことなんだ??・・・さらに複雑になりました。

Terpestacin(1)とepi体(2)の構造比較

 Jamisonらが合成したTerpestacin(1)は、すべてのスペクトルデータが他の研究者の合成品と一致しました [4]。しかし、合成した11-epi-Terpestacin(2)のNMRデータは、Miyagawaらの単離天然物「siccanol」とC3、13、15、19位において一致しませんでした(表1)。C11位の化学シフト値は一致したため、当初はC19位ジアステレオマーを合成してしまったものと考えられました。しかしこれらを誘導化した化合物のNOE測定により、ここは同一の立体であることがわかりました。

表1:Terpestacin、11-epi-Terpestacin、siccanolの1H-NMRの比較 (出典:T. F. Jamison et al., J. Am. Chem. Soc. 126, 10682 (2004).)

ここでよくみると、なんとMiyagawaらによる「siccanol」とTerpestacin(1)のスペクトルデータは全く一致していることがわか ります。

「siccanol」は11-epi-Terpestacinではなく、Terperstacinそのものだったのです。

 


なぜ構造を誤ったのか?

Jamisonらの合成によって、「siccanol」がTepestacinであることがわかりました。どうしてこのようなことが起こったのでしょうか?

第一に、Myersらによる13の全合成と、Miyagawaらによる「siccanol」の単離がほぼ同時期であり、それぞれのグループがお互いの論文に気づかなかったことが考えられます。つまり、旋光度の符号・絶対値がOkaらの単離品、竜田らの合成品と異なっていることのみを根拠に、異なる構造と考えてしまったのでしょう。

第二に、OkaのTerperstacin(1)及びMiyagawaらの「siccanol」の立体決定はMosherエステル法によって行われていますが、Miyagawaらの論文には詳細な実験操作が記載されていません。

しかし、論文中に

”….a set of (R)-MTPA and (S)-MTPA esters (at C11) was prepared..(from)… the respective MTPA chlorides.”

と記載があり、そこに原因があるのではないかとJamisonらは考えました。

絶対立体配置を決定法であるCahn-Ingold-Prelog則によれば、(R)-MTPA chlorideからは(S)-MTPAエステルが得られます

Miyagawaらは(R)-MTPAエステルを得るために(R)-MTPA chlorideを誤って用いてしまい、結果的にC11が逆の立体であるとの判断を下してしまったものと考えられました。さらにMiyagawaらは、Jamisonらにオリジナルのノートを提供し、この予想が正しいことが確認されました。

 結論を聞くと多くの間違い・勘違いがあり、非常にお粗末な結果とも取れますが、現場ではありえない話でもないと思います。研究室の学生が行った実験を信用し、スタッフが論文を書く段になっても結果に対してのチェックが行われず、結論が異なる方向に向かう・・・などといったことは往々にしてありえます。Terpestacinを巡る論文は、そのようなことがかなり複雑に絡み合ったケースだったといえるでしょう。論文は何世紀にもわたり残るものですから、しっかりとした結果を報告したいものですね。

(2005.1.25 ブレビコミン)
※本記事は以前より公開されていた内容をブログに移行したものです。

参考文献

  1. Oka, M. et al.  J. Antibiotics  199346, 367.
  2. Tatsuta, K.; Masuda, N. J. Antibiotics 1998, 51, 602. DOI:10.7164/antibiotics.51.602
  3. Myers, A. G.; Siu, M.; Ren, F. J. Am. Chem. Soc. 2002, 124, 4230. DOI: 10.1021/ja020072l
  4. Jamison, T. F. et al. J. Am. Chem. Soc. 2004126, 10682. DOI: 10.1021/ja0470968

 

関連書籍

[amazonjs asin=”4254140746″ locale=”JP” title=”天然物の全合成―華麗な戦略と方法”]
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 有機合成研究者必携! 有機合成用反応剤プロトコル集
  2. スポンジシリーズがアップデートされました。
  3. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応
  4. ケムステの記事が3650記事に到達!
  5. 第54回天然有機化合物討論会
  6. ケムステV年末ライブ2024を開催します!
  7. 溶液中での安定性と反応性を両立した金ナノ粒子触媒の開発
  8. 超分子化学と機能性材料に関する国際シンポジウム2016

注目情報

ピックアップ記事

  1. 有機無機ハイブリッドペロブスカイトはなぜ優れているのか?
  2. 湿度変化で発電する
  3. プラスチックを簡単に分解する方法の開発
  4. Greene’s Protective Groups in Organic Synthesis 5th Edition
  5. 第九回 均一系触媒で石油化学に変革を目指すー山下誠講師
  6. 化学系学生のための就活2020
  7. 石油化学大手5社、今期の営業利益が過去最高に
  8. 自動車のスリ傷を高熱で自己修復する塗料
  9. 第43回ケムステVシンポ「光化学最前線2024」を開催します!
  10. 三菱ケミカルのサステナビリティに関する取り組み

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2005年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP