[スポンサーリンク]

化学者のつぶやき

オキソニウムカチオンを飼いならす

[スポンサーリンク]

酸素原子は結合の手を二つもち、二つの原子団と結合を作ることができる―これは高校までの化学で習う、ごくごく基本的な事実です。
この酸素原子に、余分な置換基を無理やり持たせてやるとどうなるでしょう?そうするとオキソニウムカチオンという化学種ができあがります。普通より多くの手をもつ「無理のある状態」ですから、とても不安定な化学種になります。

オキソニウムカチオンを含む有機合成試薬として有名なものの一つに、Meerwein試薬があります。これは水ともすぐさま反応してしまうほどの、強力なアルキル化剤です。オキソニウムカチオンがひとつの手を離して形式電荷を解消し、2つの手を持つエーテルになるほうが無理がないため、下記のような反応が進行するわけです。

oxonium_tamed_1.gifこのように高い反応性をもつオキソニウムカチオンですが、近年カリフォルニア大学デービス校のMark Mascalらによって、異常に安定なものが作れることが示されました[1]。それがオキサトリキナン(oxatriquinane, 1)という化合物です。

具体的には以下のスキームにしたがって合成されます。

oxonium_tamed_3.gif1aは高求核性の臭化物カウンターアニオンをもちますが、自己開環を起こすことなく安定に存在することができます。またこの化合物は還流条件の水やアルコール、チオール、ヨウ化物アニオンなどの求核置換条件では反応せず、シリカゲルクロマトグラフィにも耐えるそうで全く驚きです(CN、OH、N3とは反応するようです)。SbF6へとアニオン交換した1bは結晶性化合物であり、X線構造解析によってその3次元構造が明らかにされています。こちらも安定。

なぜこれほどまでに優れた安定性を誇るのか?・・・ふーむ一見して全くわからない。みなさんはパッと見で、なぜなのか当てがつけられますか?

報告者であるMascalらは、「求核攻撃を受けて生成する構造が歪8員環であり、化学的に不利になることがその理由」と考察しています。そう言われればそんな気もしますが・・・なかなかに奥が深そうです。

またMascalらは、二重結合を3つ持つ類縁体オキサトリキナセン(oxatriquinacene,2)をも合成しています。このカチオンはアリル位に位置するため、1よりも反応性に富み、水とはすぐさま反応してしまいます。しかしこの化合物は酸化することでオキサアセペンタレンという、理論上ベンゼンと同程度の芳香族性を示す化合物になると考えられています[2]。合成中間体という意味で興味深い化合物たるようです。オキサアセペンタレンの合成そのものは未達成ですが、いずれ彼らのグループから報告があるかもしれません。

さてMascalらはさらに研究をすすめ、メチル基を3つもつ誘導体(3)を合成しました[3]。オキソニウムカチオンが三級アルキル基に結合するため、1以上に種々の求核置換条件や加溶媒分解に対して安定になっています。OMe、OAc、CNなどのアニオンに晒すと、β脱離が起こってオレフィンが得られます。まぁここまでは予測のつくところかと思います。しかしN3のような強力な求核剤で処理してやると、なんと立体反転を伴った求核付加生成物が取れてきます。

oxonium_tamed_4.gif

すなわち3級アルキル炭素上にも関わらず、SN2反応が起こるという他に類を見ない現象が観測されているわけで、これまた驚きの成果です。

本当にこれがSN1過程ではなくSN2過程なのかということについては
①SN1を加速させるプロトン性極性溶媒では、この反応は遅くなる
②反応速度プロファイルは二次であり、カチオン濃度とアジド濃度に一次ずつ依存する
③SN1の中間体であるカルボカチオンが合理的に存在し得ないことをDFT計算で示す
④LiBF4のような非活性塩の存在下に反応が遅くなる

といった教科書的な基本事項を調べて裏付けています。

有機化学の歴史は100年以上のものがありますが、こんなシンプルな性質をもつ化合物が未だ発見されていなかった、という事実は意外そのものですね。この方向で今後どんな化学が展開されていくのか、楽しみにしていたいと思います。

関連文献

  1. (a) Mascal, M.; Hafezi, N.; Meher, N. K.; Fettinger, J. C. J. Am. Chem. Soc. 2008, 130, 13532. doi:10.1021/ja805686u (b) Highlight: Haley, M. M. Angew. Chem., Int. Ed. 2009, 48, 1544. DOI: 10.1002/anie.200805417
  2. Mascal, M. J. Org. Chem. 2007, 72, 4323. DOI: 10.1021/jo070043z
  3.  Mascal, M.; Hafezi, N.; Toney, M. D. J. Am. Chem. Soc. 2010, 132, 10662. doi:10.1021/ja103880c

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ルイスペア形成を利用した電気化学発光の増強
  2. α-トコフェロールの立体選択的合成
  3. 未解明のテルペン類の生合成経路を理論的に明らかに
  4. 放線菌が生産するアベナルミ酸生合成において、ジアゾ化とヒドリド転…
  5. 第8回平田メモリアルレクチャー
  6. 小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで…
  7. ネコがマタタビにスリスリする反応には蚊除け効果があった!
  8. 【書籍】化学探偵Mr.キュリー2

注目情報

ピックアップ記事

  1. 立体選択的なスピロ環の合成
  2. アメリカで Ph. D. を取る –希望研究室にメールを送るの巻– (準備編)
  3. メチレン炭素での触媒的不斉C(sp3)-H活性化反応
  4. 総合化学大手5社の前期、4社が経常減益
  5. 外国人研究者あるある
  6. 重水素 (Deuterium)
  7. 2011年人気記事ランキング
  8. 2010年ノーベル化学賞予想ーケムステ版
  9. 第148回―「フッ素に関わる遷移金属錯体の研究」Graham Saunders准教授
  10. 理想のフェノール合成を目指して~ベンゼンからフェノールへの直接変換

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

インドの農薬市場と各社の事業戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、インド…

【味の素ファインテクノ】新卒採用情報(2027卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。…

味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します

食品会社として知られる味の素社ですが、味の素ファインテクノ社はその味の素グループ…

味の素ファインテクノ社の技術と社会貢献

味の素ファインテクノ社は、電子材料の分野において独創的な製品を開発し、お客様の中にイノベーションを起…

サステナブル社会の実現に貢献する新製品開発

味の素ファインテクノ社が開発し、これから事業に発展して、社会に大きく貢献する製品…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP