[スポンサーリンク]

化学者のつぶやき

オキソニウムカチオンを飼いならす

[スポンサーリンク]

酸素原子は結合の手を二つもち、二つの原子団と結合を作ることができる―これは高校までの化学で習う、ごくごく基本的な事実です。
この酸素原子に、余分な置換基を無理やり持たせてやるとどうなるでしょう?そうするとオキソニウムカチオンという化学種ができあがります。普通より多くの手をもつ「無理のある状態」ですから、とても不安定な化学種になります。

オキソニウムカチオンを含む有機合成試薬として有名なものの一つに、Meerwein試薬があります。これは水ともすぐさま反応してしまうほどの、強力なアルキル化剤です。オキソニウムカチオンがひとつの手を離して形式電荷を解消し、2つの手を持つエーテルになるほうが無理がないため、下記のような反応が進行するわけです。

oxonium_tamed_1.gifこのように高い反応性をもつオキソニウムカチオンですが、近年カリフォルニア大学デービス校のMark Mascalらによって、異常に安定なものが作れることが示されました[1]。それがオキサトリキナン(oxatriquinane, 1)という化合物です。

具体的には以下のスキームにしたがって合成されます。

oxonium_tamed_3.gif1aは高求核性の臭化物カウンターアニオンをもちますが、自己開環を起こすことなく安定に存在することができます。またこの化合物は還流条件の水やアルコール、チオール、ヨウ化物アニオンなどの求核置換条件では反応せず、シリカゲルクロマトグラフィにも耐えるそうで全く驚きです(CN、OH、N3とは反応するようです)。SbF6へとアニオン交換した1bは結晶性化合物であり、X線構造解析によってその3次元構造が明らかにされています。こちらも安定。

なぜこれほどまでに優れた安定性を誇るのか?・・・ふーむ一見して全くわからない。みなさんはパッと見で、なぜなのか当てがつけられますか?

報告者であるMascalらは、「求核攻撃を受けて生成する構造が歪8員環であり、化学的に不利になることがその理由」と考察しています。そう言われればそんな気もしますが・・・なかなかに奥が深そうです。

またMascalらは、二重結合を3つ持つ類縁体オキサトリキナセン(oxatriquinacene,2)をも合成しています。このカチオンはアリル位に位置するため、1よりも反応性に富み、水とはすぐさま反応してしまいます。しかしこの化合物は酸化することでオキサアセペンタレンという、理論上ベンゼンと同程度の芳香族性を示す化合物になると考えられています[2]。合成中間体という意味で興味深い化合物たるようです。オキサアセペンタレンの合成そのものは未達成ですが、いずれ彼らのグループから報告があるかもしれません。

さてMascalらはさらに研究をすすめ、メチル基を3つもつ誘導体(3)を合成しました[3]。オキソニウムカチオンが三級アルキル基に結合するため、1以上に種々の求核置換条件や加溶媒分解に対して安定になっています。OMe、OAc、CNなどのアニオンに晒すと、β脱離が起こってオレフィンが得られます。まぁここまでは予測のつくところかと思います。しかしN3のような強力な求核剤で処理してやると、なんと立体反転を伴った求核付加生成物が取れてきます。

oxonium_tamed_4.gif

すなわち3級アルキル炭素上にも関わらず、SN2反応が起こるという他に類を見ない現象が観測されているわけで、これまた驚きの成果です。

本当にこれがSN1過程ではなくSN2過程なのかということについては
①SN1を加速させるプロトン性極性溶媒では、この反応は遅くなる
②反応速度プロファイルは二次であり、カチオン濃度とアジド濃度に一次ずつ依存する
③SN1の中間体であるカルボカチオンが合理的に存在し得ないことをDFT計算で示す
④LiBF4のような非活性塩の存在下に反応が遅くなる

といった教科書的な基本事項を調べて裏付けています。

有機化学の歴史は100年以上のものがありますが、こんなシンプルな性質をもつ化合物が未だ発見されていなかった、という事実は意外そのものですね。この方向で今後どんな化学が展開されていくのか、楽しみにしていたいと思います。

関連文献

  1. (a) Mascal, M.; Hafezi, N.; Meher, N. K.; Fettinger, J. C. J. Am. Chem. Soc. 2008, 130, 13532. doi:10.1021/ja805686u (b) Highlight: Haley, M. M. Angew. Chem., Int. Ed. 2009, 48, 1544. DOI: 10.1002/anie.200805417
  2. Mascal, M. J. Org. Chem. 2007, 72, 4323. DOI: 10.1021/jo070043z
  3.  Mascal, M.; Hafezi, N.; Toney, M. D. J. Am. Chem. Soc. 2010, 132, 10662. doi:10.1021/ja103880c

 

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「次世代医療を目指した細胞間コミュニケーションのエンジニアリング…
  2. 肝はメチル基!? ロルカセリン
  3. NIMSフォーラム 「未来のエネルギーをつむぐ新材料・新物質、こ…
  4. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の…
  5. カスケード反応で難関天然物をまとめて攻略!
  6. 化学者だって数学するっつーの! :シュレディンガー方程式と複素数…
  7. Pure science
  8. 原子量に捧げる詩

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 日本学士院賞・受賞化学者一覧
  2. ブロモジメチルスルホニウムブロミド:Bromodimethylsulfonium Bromide
  3. カラッシュ・ソスノフスキ-酸化 Kharasch-Sosnovsky Oxidation
  4. 「世界の最先端で研究する」という夢と実際 ーカリフォルニア大学バークレー校 Long 研究室より
  5. 【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキサジン環に苦しみ、笑った日々~
  6. 印象に残った天然物合成1
  7. スワーン酸化 Swern Oxidation
  8. ノリッシュ・ヤン反応 Norrish-Yang Reaction
  9. 相原静大教授に日本化学会賞 芳香族の安定性解明
  10. ベンジルオキシカルボニル保護基 Cbz(Z) Protecting Group

関連商品

注目情報

注目情報

最新記事

第38回「分子組織化の多様な側面を理解する」Neil Champness教授

長らく更新が止まっていましたが、海外化学者インタビュー再開しました。Nature Chemistry…

排ガス原料のSAFでデリバリーフライトを実施

ANAは日本時間の10月30日、排ガスを原料とするSustainable Aviation Fuel…

“つける“と“はがす“の新技術―分子接合と表面制御

お申込み・詳細はこちら日程2020年1月9日(木)・10日(金)定員20名  先着順…

【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキサジン環に苦しみ、笑った日々~

日産化学は、コア技術である「精密有機合成」や「生物評価」を活かして自社独自開発の…

モノクローナル抗体を用いた人工金属酵素によるエナンチオ選択的フリーデル・クラフツ反応

第234回のスポットライトリサーチは、大阪大学大学院理学研究科・安達 琢真さんにお願いしました。…

α,β-不飽和イミンのγ-炭素原子の不斉マイケル付加反応

α,β-不飽和イミンのγ-炭素原子のエナールへのエナンチオ選択的マイケル付加反応が開発された。新規環…

Chem-Station Twitter

PAGE TOP