[スポンサーリンク]

化学者のつぶやき

sp3炭素のクロスカップリング反応の機構解明研究

[スポンサーリンク]

 

近年、遷移金属触媒を用いたsp3炭素のクロスカップリング反応が急速に進展し、注目を集めています[1, 2]。例えば、ペンシルバニア大のMolanderらは、2014年にNi/photoredox触媒を用いたハロゲン化アリールとアルキルトリフルオロボラート塩との立体選択的なクロスカップリング反応(図1) [3]を報告しています。この反応では、Ir photoredox触媒とアルキルトリフルオロボラート塩を用いることでアルキルラジカルが生じ、反応が進行していると考えられます。しかし詳細な反応機構は不明瞭なままでした。最近、同大のKozlowskiらと共同でMolanderらは筆者らは量子化学計算を用いた同反応の反応機構解明研究に関する論文がありましたので、論文中によく用いられる計算手法や用語を解説しながら紹介したいと思います。

“Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings”

Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 4896. DOI: 10.1021/ja513079r

 

2015-06-27_18-20-10

図1.  Stereoselective cross-coupling of C(sp3) using Ni catalyst

Molanderらの推定反応機構

2014年の報告中で以下のような反応機構を提唱しており、Ni(0)→Ni(II)→Ni(III)を経る触媒サイクル中のラジカル付加の段階(A2C)で、立体選択性が生じていると想定しています(図2)。

2015-06-27_18-21-47

図2.  Mechanism of stereoselective cross-coupling using Ni/photoredox catalyst reported by Molander.

 

今回筆者らは、DFTによる構造最適化(UB3LYP/6-31G(d)またはLANL2DZ)、さらに溶媒効果(SMD)を考慮したエネルギー計算(M06/6-311+G(d,p))を行っています。と、いいましても計算科学をご存知である方以外は謎のアルファベットが並んでいるようにしか見えないと思いますので、まずは量子化学計算の選定方法や、論文中によく用いられる計算手法について少し解説します。

 

量子化学計算の選定手法

今回のように構造最適化とエネルギー計算を別々の計算レベルで行うことはよく用いられる手法であり、妥当な計算レベルで最適化した構造に対し、より高い計算レベルを用いてエネルギーを求めるのが一般的です。

もちろん高いレベルの計算手法を用いることでより実験値に近いエネルギーの予測が可能となりますが、その分計算コストがかかる(必要な計算時間やメモリサイズが増大する)ため目的により使い分ける必要があります。

特にエネルギー計算に関しては、低レベルの計算手法を用いた場合実測値との差が顕著に表れます[4]。このため、エネルギー計算には構造最適化よりも高いレベルの計算手法(MP2, MP4, CCSDなど)を用います。今回の報告の中で用いられているM06はDFTではありますが、計算レベルの高いMP2に近いエネルギー値を予測することが可能です[5]。また、汎関数のレベルを上げるに伴い、基底関数も6-31G(d)から6-311+G(d)へとレベルを上げています(両方とも内殻起動は6個のガウス関数で表わされているが、6-311+G(d)ではさらに、価電子軌道を3つの部分に分けている)。

 

実験の論文でよく用いられる計算手法

UB3LYP/6-31+G(d,p)

  • B3LYP: DFT法の中でも、最も頻繁に用いられている汎関数。電子相関の効果を取り入れている。
  • U: ラジカルが生じる系において、スピン非制限用法を導入するために用いられる
  • +: 分散関数を導入することで、アニオンやカチオンなどの電荷の局在化の大きい分子の電荷密度を考慮することができる。
  • (d), *: 重原子に分極関数を導入することで、d軌道の分極を表現できる。
  • (d, p), **: (d)に、さらに水素ヘリウムにも分極関数を導入した基底関数。第3周期のd軌道を含む分子の再現性に優れている。
  • IRC: 遷移状態の構造から、出発物質と生成物の構造を自動で求めることができる。
  • SMD, PCM: 溶媒効果を取り入れるのに用いられる

 

新たな反応機構がみいだされる

さて、話を元に戻しますと、計算結果より、筆者らが初めに想定していた反応機構(図1)ではなく、以下に示す新たな反応機構(図 2)の方が最もらしいとわかりました。

2015-06-27_18-23-38

図2 Possible alternative pathway indicated by computation.

 

各段階の活性化エネルギーは以下の通り。

  • Ni(0)に対する、アルキルラジカル種の付加: AB2 / [4.8 kcal/mol]
  • Ni(I)に対するアリールブロミドの酸化的付加: B2C / [18.2 kcal/mol], 律速段階
  • Ni(III)錯体と[Ni(II)錯体+アルキルラジカル種]の平衡: CA2 / [2.7 kcal/mol], A2C / [2.9 kcal/mol]
  • 還元的脱離: CD / [8.7 kcal/mol]

 

計算により、酸化的付加後に生じるNi(III)錯体Cからの還元的脱離の活性化エネルギー(8.7 kcal/mol)よりも、Ni(III)錯体CがNi(II)錯体A2 とアルキルラジカル種へ解離する際の活性化エネルギー(2.7 kcal/mol)の方が低いということが明らかになりました。この結果は、還元的脱離より速い[錯体A2 +アルキルラジカル種]とNi(III)錯体Cの平衡が存在することを示唆している。

 

立体選択性はどこで発現する?

明らかとなった反応機構より、筆者らは立体選択性が還元的脱離の段階において発現するという着想に至った。

筆者らはこの想定を検証するために、不斉配位子と1-フェニルエチルトリフルオロボラート塩を用い、Ni(III)錯体と[Ni(II)錯体+アルキルラジカル種]間の平衡と、還元的脱離の遷移状態の考察を行いました。その結果、A2′C’favまたはA2′C’disfav間は平衡状態であり、C’favまたはC’disfavから生成物に至る遷移状態(C’fav -TSまたはC’disfav-TS)のうち活性化エネルギーのより小さなC’fav -TSを経由して反応が進行することがわかりました。以上より筆者らは、立体選択性はNi(III)錯体C, C’の動的速度論的光学分割(Dynamic Kinetic Resolution)によって説明できると考えました(図3)。

2015-06-27_18-26-14

図3. Explanation of stereoselectivity caused by Dynamic Kinetic Resolution

 

さらに筆者らは、様々な基質を用いて立体選択性を決定する遷移状態(還元的脱離の遷移状態C-TS)の計算を行いました。その結果、パラ位により嵩高い置換基を持つアリールブロミドを用いると、より高い立体選択性が発現するとされました。この計算結果は、実際の実験結果と同様の傾向を示すことが判明しています(図4)。

 

Figure 4. Predicted and experimental reaction enantioselectivities.

図 4. Predicted and experimental reaction enantioselectivities.

 

今回の報告により、Ni/photoredox触媒を用いたsp3炭素のクロスカップリングにおける詳細な触媒サイクルや立体選択性の発現機構が初めて明らかにされました。計算科学の論文は辻褄を合わせているようなものもありますが(計算だけでわかったら、実験いらないですよね。あまり期待しなければ問題無いです)、実験化学と併せて報告している論文は計算結果のフィードバックという両方向からのアプローチができるのでより面白いですね。

 

 

関連論文

  1. Zhou, J. S.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726. DOI: 10.1021/ja0389366
  2. Jana, R; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. DOI: 10.1021/cr100327p
  3. Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433. DOI: 10.1126/science.1253647
  4. Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694. DOI: 10.1021/ja8013677
  5. Droogenbroeck, J. V.; Tersago, K.; Alsenoy, C. V.; Blockhuys, F. Chem. Phys. Lett. 2004, 399, 516. DOI; 10.1016/j.cplett.2004.10.065
  6. Bryantsev, V. S.; Diallo, M. S.; van Duin, A. C. T.; Goddard III, W. A. Chem. Theory Comput. 2009, 5, 1016.

 

外部リンク

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 「ELEMENT GIRLS 元素周期 ~聴いて萌えちゃう化学の…
  2. Arcutine類の全合成
  3. ホウ素は求電子剤?求核剤?
  4. 最近の有機化学論文2
  5. 亜鉛挿入反応へのLi塩の効果
  6. 事故を未然に防ごう~確認しておきたい心構えと対策~
  7. 光触媒に相談だ 直鎖型の一級アミンはアンモニア水とアルケンから
  8. テクノシグマのミニオイルバス MOB-200 を試してみた

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 吸入ステロイド薬「フルタイド」の調査結果を発表
  2. ボタン一つで化合物を自動合成できる機械
  3. 薬が足りない!?ジェネリック医薬品の今
  4. 化学者のためのエレクトロニクス講座~化合物半導体編
  5. 武田オレフィン合成 Takeda Olefination
  6. 硤合 憲三 Kenso Soai
  7. 第174回―「特殊な性質を持つフルオロカーボンの化学」David Lemal教授
  8. 脱水素型クロスカップリング重合法の開発
  9. 【書籍】有機スペクトル解析入門
  10. シクロカサオドリン:鳥取の新しい名物が有機合成された?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP