[スポンサーリンク]

化学者のつぶやき

150度以上の高温で使える半導体プラスチック

[スポンサーリンク]

Purdue大学のMei教授らは、150ºC以上の高温でも安定的に電気を流せる半導体ポリマー材料を開発することに成功しました。

“Semiconducting polymer blends that exhibit stable charge transport at high temperatures”

Gumyusenge, A.; Tran, D. T.; Luo, X.; Pitch, G. M.; Zhao, Y.; Jenkins, K. A.; Dunn, T. J.; Ayzner, A. L.; Savoie, B. M.; Mei J. Science 2018, 362, 1131. (DOI: 10.1126/science.aau0759)

1. 半導体は熱に弱い。

携帯電話やパソコンなど、電子機器は一般的に熱に弱いとされています。その理由の一つは、高温では電子機器中の半導体において、電気がうまく流れなくなってしまうからです。

半導体は、電子機器に欠かせないトランジスタという部品に用いられています。「トランジスタって、聞いたことはあるけどよく知らない…」という人もいるかも知れませんが、簡単に言えば、トランジスタとは電流や電圧をコントロールできる部品のことです。トランジスタを使って電圧を調節し、電圧の高い状態を0、低い状態を1とみなすことで、コンピュータの基礎となる論理演算ができるようになります。(より詳しく知りたい方はこちら

さて、トランジスタに最もよく使われている材料は無機物質のシリコンですが、近年では有機半導体分子を用いた有機電界効果トランジスタ(OFET)の応用も進められています。OFETは図1aのような構造をしていて、ソース・ドレイン・ゲートという3つの電極と、有機半導体の層、絶縁性の層からなります。まず、ドレイン・ソース間に電圧をかけると、有機半導体のキャリアの量に応じて、電流が流れます。このとき、ゲート電極にも電圧をかけると、有機半導体の層においてキャリアが移動し、絶縁膜の付近でのキャリアの濃度が変化します。こうすることで、ドレイン・ソース間に流れる電流の量を調節することができます。

図1.  (a) 一般的な有機電界効果トランジスタ(OFET)の構造。(b) ゲート電圧をかけると、p型有機半導体内のキャリア(正孔)が絶縁膜付近へと移動し、キャリア濃度の高い層ができる。

ところが、このようなトランジスタは150 ºC以上の高温になるとうまく働かなくなってしまいます。それは、常温できちんと配列していた有機半導体分子が、高温になると運動性を増し、配列やパッキングが崩れてしまうからです。

2. 熱に強いポリマーとのブレンドで、耐熱性を上げる。

そこでMei教授らは、半導体ポリマーに対して耐熱性のポリマーを混ぜることで、高温での分子のコンフォメーション変化を抑え、半導体ポリマーの性能を安定に保とうと考えました。彼らが用いたのは、ジケトピロロピロール-チオフェン(DPP-T)という半導体ポリマーと、ポリビニルカルバゾール(PVK)というガラス転移点(Tgの高いポリマーです(図2)。ガラス転移点というのは、ポリマーをその温度以上に加熱すると、柔らかく変形しやすくなる温度のことです。PVKはガラス転移点が220 ºCと高いので、その温度以下では硬く、形状をしっかり保つことができます。

図2. 半導体ポリマー(DPP-T)と、ガラス転移点の高いポリマー(PVK)。

彼らは、半導体ポリマーのDPP-Tに対してPVKを様々な比で混ぜて図3aのようなトランジスタを作り、各温度でのキャリアの移動度を測定しました。図3bからわかるように、PVKを50%〜60%混ぜた場合には、25ºCから220ºCの範囲で一定して高いキャリア移動度(〜2.5 cm2/Vs)が得られています。

図3. (a) DPP-TとPVKを用いたトランジスタ。(b) 各温度におけるトランジスタのキャリア移動度(µh)。グラフは論文より。

3. PVKとのブレンドにより、分子間相互作用が強化。

では、PVKを混ぜることで、分子レベルではどのようなことが起こっているのでしょうか。彼らは、UV-Vis分光法や原子間力顕微鏡(AFM)、微小角入射X線回折法(GIXD)などを用いて、ポリマー材料を詳細に調べました。図4aは、GIXDにより得られた、ポリマー分子間のπ–π相互作用距離を示しています。DPP-Tのみの場合(P1)と比べて、PVKを混ぜた場合(PVK Blend)には、π–π相互作用距離が小さくなっていることが分かります。π–π相互作用距離が小さいということは、ポリマー分子同士が密接にパッキングしており、分子の動ける範囲が小さい(自由度が小さい)ということです。つまり、PVKを混ぜることで分子鎖内での再配列が制限され、半導体ポリマーが温度による影響を受けにくくなったと言えます。実際、彼らが行った分子動力学シミュレーションでは、π–π相互作用距離が5Åのときに比べ、3Åのときには分子内の回転自由度が下がる(CCCN二面角の分布が狭まる)という結果が得られています(図4b, c)。

図4. (a) 各温度におけるポリマー分子間のπ–π相互作用距離。P1: DPP-Tのみ。PVK Blend: DPP-TにPVKを60%の比率で混合。(b) 分子動力学計算による、各温度でのCCCN二面角の確率分布。 (c) 分子動力学計算によるDPP-Tポリマー鎖のパッキングモデル。π–π相互作用距離:3Å(左)、5Å(右)。論文より。

4. 他のポリマーにも応用可能。

それでは、他の半導体ポリマーや高ガラス転移点のポリマーを用いた場合でも、同じように耐熱性を向上させることはできるのでしょうか。Mei教授らは、様々な半導体ポリマーや高ガラス転移点ポリマーを用いて同様の実験を行いました。図5aは、彼らが用いた高ガラス転移点のポリマーを示しています。これらを半導体ポリマーDPP-T(P1)と相分離しない割合で混ぜたところ、PEI・PAC・MEを混ぜた場合においても220ºCという高温下で安定したキャリア移動度が得られることが分かりました。PCを混ぜた場合には、200 ºC以上でキャリア移動度の低下が見られますが、これはPCのガラス転移点が182 ºCであることと一致しています。

図5. (a) 高ガラス転移点ポリマーの構造。(b) 各温度におけるトランジスタのキャリア移動度(µh)。グラフは論文より。

5. おわりに

Mei教授らは、半導体ポリマーに耐熱性のポリマーを混ぜるというシンプルな方法で、150ºC以上の高温に耐える半導体を得ることに成功しました。耐熱性の半導体は、飛行機のエンジン付近で使用するセンサーや、宇宙探査機など、様々な場面で有用なので、今後応用が進められることが期待されます。

関連リンク

参考文献

  1. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Chem. Rev. 2007, 107, 926. DOI: 10.1021/cr050140x

関連書籍

[amazonjs asin=”4769341601″ locale=”JP” title=”はじめての導電性高分子 (ビギナーズブックス)”] [amazonjs asin=”4798053538″ locale=”JP” title=”図解入門 よくわかる半導体プロセスの基本と仕組み第3版”]
Avatar photo

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. 糖鎖を直接連結し天然物をつくる
  2. 有機合成化学協会誌6月号:ポリフィリン・ブチルアニリド・ヘテロ環…
  3. Delta 6.0.0 for Win & Macがリリ…
  4. Callipeltosideの全合成と構造訂正
  5. アメリカで Ph.D. を取る –エッセイを書くの巻– (後編)…
  6. 近くにラジカルがいるだけでベンゼンの芳香族性が崩れた!
  7. 有望な若手研究者を発掘ー研究者探索サービス「JDream Exp…
  8. 昇華の反対は?

注目情報

ピックアップ記事

  1. 日本学術振興会賞受賞者一覧
  2. 春田 正毅 Masatake Haruta
  3. 4つの性がある小鳥と超遺伝子
  4. アスタチンを薬に使う!?
  5. 顕微鏡で有機化合物のカタチを決める!
  6. whileの使い方
  7. ヨン・ピエール Jorn Piel
  8. Chem-Station開設5周年へ
  9. バールエンガ試薬 Barluenga’s Reagent
  10. 大栗 博毅 Hiroki Oguri

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP