[スポンサーリンク]

化学者のつぶやき

150度以上の高温で使える半導体プラスチック

[スポンサーリンク]

Purdue大学のMei教授らは、150ºC以上の高温でも安定的に電気を流せる半導体ポリマー材料を開発することに成功しました。

“Semiconducting polymer blends that exhibit stable charge transport at high temperatures”

Gumyusenge, A.; Tran, D. T.; Luo, X.; Pitch, G. M.; Zhao, Y.; Jenkins, K. A.; Dunn, T. J.; Ayzner, A. L.; Savoie, B. M.; Mei J. Science 2018, 362, 1131. (DOI: 10.1126/science.aau0759)

1. 半導体は熱に弱い。

携帯電話やパソコンなど、電子機器は一般的に熱に弱いとされています。その理由の一つは、高温では電子機器中の半導体において、電気がうまく流れなくなってしまうからです。

半導体は、電子機器に欠かせないトランジスタという部品に用いられています。「トランジスタって、聞いたことはあるけどよく知らない…」という人もいるかも知れませんが、簡単に言えば、トランジスタとは電流や電圧をコントロールできる部品のことです。トランジスタを使って電圧を調節し、電圧の高い状態を0、低い状態を1とみなすことで、コンピュータの基礎となる論理演算ができるようになります。(より詳しく知りたい方はこちら

さて、トランジスタに最もよく使われている材料は無機物質のシリコンですが、近年では有機半導体分子を用いた有機電界効果トランジスタ(OFET)の応用も進められています。OFETは図1aのような構造をしていて、ソース・ドレイン・ゲートという3つの電極と、有機半導体の層、絶縁性の層からなります。まず、ドレイン・ソース間に電圧をかけると、有機半導体のキャリアの量に応じて、電流が流れます。このとき、ゲート電極にも電圧をかけると、有機半導体の層においてキャリアが移動し、絶縁膜の付近でのキャリアの濃度が変化します。こうすることで、ドレイン・ソース間に流れる電流の量を調節することができます。

図1.  (a) 一般的な有機電界効果トランジスタ(OFET)の構造。(b) ゲート電圧をかけると、p型有機半導体内のキャリア(正孔)が絶縁膜付近へと移動し、キャリア濃度の高い層ができる。

ところが、このようなトランジスタは150 ºC以上の高温になるとうまく働かなくなってしまいます。それは、常温できちんと配列していた有機半導体分子が、高温になると運動性を増し、配列やパッキングが崩れてしまうからです。

2. 熱に強いポリマーとのブレンドで、耐熱性を上げる。

そこでMei教授らは、半導体ポリマーに対して耐熱性のポリマーを混ぜることで、高温での分子のコンフォメーション変化を抑え、半導体ポリマーの性能を安定に保とうと考えました。彼らが用いたのは、ジケトピロロピロール-チオフェン(DPP-T)という半導体ポリマーと、ポリビニルカルバゾール(PVK)というガラス転移点(Tgの高いポリマーです(図2)。ガラス転移点というのは、ポリマーをその温度以上に加熱すると、柔らかく変形しやすくなる温度のことです。PVKはガラス転移点が220 ºCと高いので、その温度以下では硬く、形状をしっかり保つことができます。

図2. 半導体ポリマー(DPP-T)と、ガラス転移点の高いポリマー(PVK)。

彼らは、半導体ポリマーのDPP-Tに対してPVKを様々な比で混ぜて図3aのようなトランジスタを作り、各温度でのキャリアの移動度を測定しました。図3bからわかるように、PVKを50%〜60%混ぜた場合には、25ºCから220ºCの範囲で一定して高いキャリア移動度(〜2.5 cm2/Vs)が得られています。

図3. (a) DPP-TとPVKを用いたトランジスタ。(b) 各温度におけるトランジスタのキャリア移動度(µh)。グラフは論文より。

3. PVKとのブレンドにより、分子間相互作用が強化。

では、PVKを混ぜることで、分子レベルではどのようなことが起こっているのでしょうか。彼らは、UV-Vis分光法や原子間力顕微鏡(AFM)、微小角入射X線回折法(GIXD)などを用いて、ポリマー材料を詳細に調べました。図4aは、GIXDにより得られた、ポリマー分子間のπ–π相互作用距離を示しています。DPP-Tのみの場合(P1)と比べて、PVKを混ぜた場合(PVK Blend)には、π–π相互作用距離が小さくなっていることが分かります。π–π相互作用距離が小さいということは、ポリマー分子同士が密接にパッキングしており、分子の動ける範囲が小さい(自由度が小さい)ということです。つまり、PVKを混ぜることで分子鎖内での再配列が制限され、半導体ポリマーが温度による影響を受けにくくなったと言えます。実際、彼らが行った分子動力学シミュレーションでは、π–π相互作用距離が5Åのときに比べ、3Åのときには分子内の回転自由度が下がる(CCCN二面角の分布が狭まる)という結果が得られています(図4b, c)。

図4. (a) 各温度におけるポリマー分子間のπ–π相互作用距離。P1: DPP-Tのみ。PVK Blend: DPP-TにPVKを60%の比率で混合。(b) 分子動力学計算による、各温度でのCCCN二面角の確率分布。 (c) 分子動力学計算によるDPP-Tポリマー鎖のパッキングモデル。π–π相互作用距離:3Å(左)、5Å(右)。論文より。

4. 他のポリマーにも応用可能。

それでは、他の半導体ポリマーや高ガラス転移点のポリマーを用いた場合でも、同じように耐熱性を向上させることはできるのでしょうか。Mei教授らは、様々な半導体ポリマーや高ガラス転移点ポリマーを用いて同様の実験を行いました。図5aは、彼らが用いた高ガラス転移点のポリマーを示しています。これらを半導体ポリマーDPP-T(P1)と相分離しない割合で混ぜたところ、PEI・PAC・MEを混ぜた場合においても220ºCという高温下で安定したキャリア移動度が得られることが分かりました。PCを混ぜた場合には、200 ºC以上でキャリア移動度の低下が見られますが、これはPCのガラス転移点が182 ºCであることと一致しています。

図5. (a) 高ガラス転移点ポリマーの構造。(b) 各温度におけるトランジスタのキャリア移動度(µh)。グラフは論文より。

5. おわりに

Mei教授らは、半導体ポリマーに耐熱性のポリマーを混ぜるというシンプルな方法で、150ºC以上の高温に耐える半導体を得ることに成功しました。耐熱性の半導体は、飛行機のエンジン付近で使用するセンサーや、宇宙探査機など、様々な場面で有用なので、今後応用が進められることが期待されます。

関連リンク

参考文献

  1. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Chem. Rev. 2007, 107, 926. DOI: 10.1021/cr050140x

関連書籍

kanako

kanako

投稿者の記事一覧

大学院生。化学科、ケミカルバイオロジー専攻。趣味はスポーツで、アルティメットフリスビーにはまり中。

関連記事

  1. き裂を高速で修復する自己治癒材料
  2. 小型質量分析装置expression® CMSを試してみた
  3. Lindau Nobel Laureate Meeting 動画…
  4. ラジカルパスでアリールをホウ素から炭素へパス!
  5. 【追悼企画】水銀そして甘み、ガンへー合成化学、創薬化学への展開ー…
  6. 温和な室温条件で高反応性活性種・オルトキノジメタンを生成
  7. ネコがマタタビにスリスリする反応には蚊除け効果があった!
  8. comparing with (to)の使い方

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 令和元年度 のPRTR データが公表~第一種指定化学物質の排出量・移動量の集計結果~
  2. バイエル薬品、アスピリンをモチーフにしたTシャツをユニクロで発売
  3. ジェームス・ツアー James M. Tour
  4. 多孔質ガス貯蔵のジレンマを打ち破った MOF –質量でもよし、体積でもよし–
  5. 化学者のためのエレクトロニクス講座~次世代の通信技術編~
  6. Dead Endを回避せよ!「全合成・極限からの一手」③
  7. 「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~ 2
  8. 第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授
  9. 旭化成、5年で戦略投資4千億
  10. 科学とは「未知への挑戦」–2019年度ロレアル-ユネスコ女性科学者日本奨励賞

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
« 12月   2月 »
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授

第165回の海外化学者インタビューは、エドウィン(エド)・コンステイブル教授です。バーゼル大学化学科…

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

ライトケミカル工業2023卒採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP