[スポンサーリンク]

化学者のつぶやき

150度以上の高温で使える半導体プラスチック

[スポンサーリンク]

Purdue大学のMei教授らは、150ºC以上の高温でも安定的に電気を流せる半導体ポリマー材料を開発することに成功しました。

“Semiconducting polymer blends that exhibit stable charge transport at high temperatures”

Gumyusenge, A.; Tran, D. T.; Luo, X.; Pitch, G. M.; Zhao, Y.; Jenkins, K. A.; Dunn, T. J.; Ayzner, A. L.; Savoie, B. M.; Mei J. Science 2018, 362, 1131. (DOI: 10.1126/science.aau0759)

1. 半導体は熱に弱い。

携帯電話やパソコンなど、電子機器は一般的に熱に弱いとされています。その理由の一つは、高温では電子機器中の半導体において、電気がうまく流れなくなってしまうからです。

半導体は、電子機器に欠かせないトランジスタという部品に用いられています。「トランジスタって、聞いたことはあるけどよく知らない…」という人もいるかも知れませんが、簡単に言えば、トランジスタとは電流や電圧をコントロールできる部品のことです。トランジスタを使って電圧を調節し、電圧の高い状態を0、低い状態を1とみなすことで、コンピュータの基礎となる論理演算ができるようになります。(より詳しく知りたい方はこちら

さて、トランジスタに最もよく使われている材料は無機物質のシリコンですが、近年では有機半導体分子を用いた有機電界効果トランジスタ(OFET)の応用も進められています。OFETは図1aのような構造をしていて、ソース・ドレイン・ゲートという3つの電極と、有機半導体の層、絶縁性の層からなります。まず、ドレイン・ソース間に電圧をかけると、有機半導体のキャリアの量に応じて、電流が流れます。このとき、ゲート電極にも電圧をかけると、有機半導体の層においてキャリアが移動し、絶縁膜の付近でのキャリアの濃度が変化します。こうすることで、ドレイン・ソース間に流れる電流の量を調節することができます。

図1.  (a) 一般的な有機電界効果トランジスタ(OFET)の構造。(b) ゲート電圧をかけると、p型有機半導体内のキャリア(正孔)が絶縁膜付近へと移動し、キャリア濃度の高い層ができる。

ところが、このようなトランジスタは150 ºC以上の高温になるとうまく働かなくなってしまいます。それは、常温できちんと配列していた有機半導体分子が、高温になると運動性を増し、配列やパッキングが崩れてしまうからです。

2. 熱に強いポリマーとのブレンドで、耐熱性を上げる。

そこでMei教授らは、半導体ポリマーに対して耐熱性のポリマーを混ぜることで、高温での分子のコンフォメーション変化を抑え、半導体ポリマーの性能を安定に保とうと考えました。彼らが用いたのは、ジケトピロロピロール-チオフェン(DPP-T)という半導体ポリマーと、ポリビニルカルバゾール(PVK)というガラス転移点(Tgの高いポリマーです(図2)。ガラス転移点というのは、ポリマーをその温度以上に加熱すると、柔らかく変形しやすくなる温度のことです。PVKはガラス転移点が220 ºCと高いので、その温度以下では硬く、形状をしっかり保つことができます。

図2. 半導体ポリマー(DPP-T)と、ガラス転移点の高いポリマー(PVK)。

彼らは、半導体ポリマーのDPP-Tに対してPVKを様々な比で混ぜて図3aのようなトランジスタを作り、各温度でのキャリアの移動度を測定しました。図3bからわかるように、PVKを50%〜60%混ぜた場合には、25ºCから220ºCの範囲で一定して高いキャリア移動度(〜2.5 cm2/Vs)が得られています。

図3. (a) DPP-TとPVKを用いたトランジスタ。(b) 各温度におけるトランジスタのキャリア移動度(µh)。グラフは論文より。

3. PVKとのブレンドにより、分子間相互作用が強化。

では、PVKを混ぜることで、分子レベルではどのようなことが起こっているのでしょうか。彼らは、UV-Vis分光法や原子間力顕微鏡(AFM)、微小角入射X線回折法(GIXD)などを用いて、ポリマー材料を詳細に調べました。図4aは、GIXDにより得られた、ポリマー分子間のπ–π相互作用距離を示しています。DPP-Tのみの場合(P1)と比べて、PVKを混ぜた場合(PVK Blend)には、π–π相互作用距離が小さくなっていることが分かります。π–π相互作用距離が小さいということは、ポリマー分子同士が密接にパッキングしており、分子の動ける範囲が小さい(自由度が小さい)ということです。つまり、PVKを混ぜることで分子鎖内での再配列が制限され、半導体ポリマーが温度による影響を受けにくくなったと言えます。実際、彼らが行った分子動力学シミュレーションでは、π–π相互作用距離が5Åのときに比べ、3Åのときには分子内の回転自由度が下がる(CCCN二面角の分布が狭まる)という結果が得られています(図4b, c)。

図4. (a) 各温度におけるポリマー分子間のπ–π相互作用距離。P1: DPP-Tのみ。PVK Blend: DPP-TにPVKを60%の比率で混合。(b) 分子動力学計算による、各温度でのCCCN二面角の確率分布。 (c) 分子動力学計算によるDPP-Tポリマー鎖のパッキングモデル。π–π相互作用距離:3Å(左)、5Å(右)。論文より。

4. 他のポリマーにも応用可能。

それでは、他の半導体ポリマーや高ガラス転移点のポリマーを用いた場合でも、同じように耐熱性を向上させることはできるのでしょうか。Mei教授らは、様々な半導体ポリマーや高ガラス転移点ポリマーを用いて同様の実験を行いました。図5aは、彼らが用いた高ガラス転移点のポリマーを示しています。これらを半導体ポリマーDPP-T(P1)と相分離しない割合で混ぜたところ、PEI・PAC・MEを混ぜた場合においても220ºCという高温下で安定したキャリア移動度が得られることが分かりました。PCを混ぜた場合には、200 ºC以上でキャリア移動度の低下が見られますが、これはPCのガラス転移点が182 ºCであることと一致しています。

図5. (a) 高ガラス転移点ポリマーの構造。(b) 各温度におけるトランジスタのキャリア移動度(µh)。グラフは論文より。

5. おわりに

Mei教授らは、半導体ポリマーに耐熱性のポリマーを混ぜるというシンプルな方法で、150ºC以上の高温に耐える半導体を得ることに成功しました。耐熱性の半導体は、飛行機のエンジン付近で使用するセンサーや、宇宙探査機など、様々な場面で有用なので、今後応用が進められることが期待されます。

関連リンク

参考文献

  1. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Chem. Rev. 2007, 107, 926. DOI: 10.1021/cr050140x

関連書籍

[amazonjs asin=”4769341601″ locale=”JP” title=”はじめての導電性高分子 (ビギナーズブックス)”] [amazonjs asin=”4798053538″ locale=”JP” title=”図解入門 よくわかる半導体プロセスの基本と仕組み第3版”]
Avatar photo

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. イボレノリドAの単離から全合成まで
  2. ケムステイブニングミキサー2015へ参加しよう!
  3. 高分子化学をふまえて「神経のような動きをする」電子素子をつくる
  4. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  5. 大学入試のあれこれ ②
  6. マイルの寄付:東北地方太平洋沖地震
  7. 浜松ホトニクスがケムステVプレミアレクチャーに協賛しました
  8. 脱水素型クロスカップリング重合法の開発

注目情報

ピックアップ記事

  1. 有望な若手研究者を発掘ー研究者探索サービス「JDream Expert Finder」
  2. アイルランド・クライゼン転位 Ireland-Claisen Rearrangement
  3. ケー・シー・ニコラウ K. C. Nicolaou
  4. Heterocyclic Chemistry
  5. DNAのもとは隕石とともに
  6. 統合失調症治療の新しいターゲット分子候補−HDAC2
  7. 化学でもフェルミ推定
  8. 有機合成プロセスにおけるマテリアルズ・インフォマティクスの活用
  9. リチウムイオン電池の課題のはなし-1
  10. PEG化合物を簡単に精製したい?それなら塩化マグネシウム!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP