[スポンサーリンク]

一般的な話題

私が思う化学史上最大の成果-2

[スポンサーリンク]

alchemy_edit.jpg

 さて「私が思う化学史上最大の成果」。前回の続きとなります。

本書の内容は大きく4部に分かれ、本当にざっくりと記述すると

A.人類がどのように肥料を得てきたか~南米硝石の争奪戦と枯渇

B.Haberのラボプラント実証~Boschによる量産化の苦闘

C.第一次世界大戦に組み込まれた化学工業

D.第二次世界大戦に突き進むドイツの中でのHaber、Bosch二人の苦悩

 

のようになります。さて、このうちBのHaber-Bosch法の実証~量産化をさらに詳細に見ていきますと、大きく次の5つのハードルがありました。

1.ラボスケールの高圧(>300気圧)アンモニア合成実現

2.触媒の低コスト化

3.原料ガス(窒素・水素)の供給と高純度化

4.巨大高圧リアクターの実現

5.周辺部品(バルブ類、計測器類、・・・)の完成

それぞれを追って見ていきましょう。

ハードル1:ラボスケールの高圧(>300気圧)アンモニア合成実現

この合成実現のためのコンセプトをHaber, ラボリアクターをle Rossignol, 検証のための数多くの実験を田丸節郎(のちの理研創設に貢献)が実現しました。Haberの功績は述べるまでもありませんが、アンモニアの分解・合成の平衡定数を綿密に追うことで必ず合成できるという理屈を打ち立てた点はまさに炯眼としか言いようがありません。またRossignol、田丸は共に極めて優れた実験技術者で、彼らの存在がこの実証に大きな影響と与えました(ただし田丸節郎の名前は本書に記載されていません・・・この点は本書の数少ない欠点だと思います)。

Tamaru-Rossignol

実証実験に活躍したle Rossignolと田丸節郎
(鮮明なle Rossignolの画像は見つかっておりません・・・
田丸節郎の画像はこちらより引用しました)

 しかし1の実証の時点での触媒はなんと非常に高価なオスミウムOs又はウランUであり、低コストな代価品を探すことが喫緊の課題でした。それが2つめのハードルとなります

ハードル2:触媒の低コスト化

この難課題を解決したのがBASFの若き触媒開発リーダAlwin Mittaschです。彼は最終的にFeを主成分とし、Al2O3、K2Oを微量含んだ組成にたどり着きますが、これは2,500種類以上の材料、20,000回に及ぶ実験という凄まじいスクリーニングに基づいたものでした。

AM
Alwin Mittasch Ostwaldのもとでニッケル触媒を研究後、BASFに入社

晩年までBASFに勤務し、数々の不均一触媒を発見した

ハードル3:原料ガス(窒素・水素)の供給と高純度化

これはあまり知られていませんが、実は2,4と並ぶ巨大な課題でした。N2供給・高純度化は比較的すんなり成功したものの、化石燃料などからH2を取り出すための高温水蒸気水改質法、その副生成物である触媒被毒成分CO除去の確立が難航を極めたためです。結局、後にBoschの片腕となるCarl KrauchによってCO除去溶液が発見され、解決されたのですが、この問題にBoschは相当悩まされていたようで、いよいよという時にKrauchに解決を命じて本人は休暇に出る、という面白い行動に出ています(本書未記載)。要は部下に課題を丸投げしたわけですが、休暇から帰ってきてみると望みの性能の溶液が見つかっていたそうです。こういった行為も場合によっては良い結果を生むものですね。

Carl_Krauch_in_einem_Labor_bei_Bayer_1942

Carl Krauch
ハイデルベルグ大学でPh.D.を取得した辣腕技術者
後にBoschに代わりI.G.Farbenを率いることになる

ハードル4および5:巨大高圧リアクターの実現と周辺部品の完成

これらはBosch本人による問題発見と強力なリーダシップによって解決されますが、この部分は是非本書をお読み下さい。特に度重なる困難にもひるまず装置の大型化を成し遂げたBoschの信念、リーダシップ、それによくフォローしたBASFスタッフの協力、そして全体の開発進め方と、研究者だけでなく一般の技術者にも是非お読み頂きたい内容です。なおこの解決の過程で非常に大きな影響を与えたのは、Boschが「まっとうな」化学者ではなく冶金学(Metallurgy)を修めていたことでした。当時のBASFではいわゆる傍流だったわけですが・・・人間何が幸いするかわからんものです。

最後に何より驚くのは、この2~5はたった4年弱で完了したということです。本文には設備や分析機器への多大な投資につき触れられていますが、加えて相当な労働力酷使と無茶関係者の努力があったと推測されます。

Stars.jpg

(Haber、Krauchの写真は日本語/英語版Wikipedia、Mittaschはこちら、Boschの画像はこちらより引用させて頂きました)

 本発明から100年経った現在もほとんどこの時点で創造されたシステム、触媒、手法、リアクターでアンモニアが合成されています。この書物で、人が生きていく限り必要な食料、それを支える肥料に関わる発明がどのように成し遂げられたかを見ていただければ紹介者として嬉しい限りです。

なおこのような偉大な発明を成し遂げた主人公の2人、HaberとBoschのその後は幸せなものではありませんでした。Haberは塩素系毒ガスの開発に携わったことで世間の評判を落とした上、ユダヤ人であったためにナチス(初期)により「最も愛し貢献してきたはずの」ドイツを追放されます。その後各国を転々としワイツマン(イスラエル初代大統領)からの誘いで当時建国途上のイスラエルへ向かう旅中、スイスのBaselで客死しました。一方Boschも経営者としてBASFを支えるために国と戦争への加担を強めていかざるをえず、その中でナチスに反抗するものの、結局自分が築き上げてきたものが戦争に利用されていくことを制止出来ず苦悩の中Heidelbergでこの世を去ります。いずれも「技術が権力のツールとしてのみ使われた最も不幸なケース」だったと言えましょう。おそらく二人とも化学者としては最も成功したケースであるはずなのに、このような結末と、彼らの成果のインパクトを考えるにつけ、もっと幸せな最期を迎えてもらいたかったなと思わざるを得ません。

Haber-Bosch-Late

晩年のHaberとBoschの写真(引用はこちらこちら)。
Haberは晩年には心臓を、Boschは精神を患っていたという。

 HaberはBaselのFriedhof am Hornliの高台で、またBoschはドイツHeidelbergのBerg Friedhofで眠っています。もし近くで学会などがあった場合には、こうした二人の生き方に思いを馳せつつお墓を尋ねてみてはいかがでしょうか。またHeidelbergにはBosch Museumがあり、彼の研究人生に関わる資料が多く展示されていますので是非足をお運びください。

 Graves

Haber, Boschそれぞれのお墓
(Haberのお墓の写真はこちら、Boschの写真はこちらから引用致しました)

なおFriedhof am Hornliには入り口付近に検索システムがあり、Haberの墓の位置はそこから調べられます。Berg Friedhofにはそうした検索システムは無いのでなかなか探すのが難渋しますが、Boschの墓は裏手のSteigerwegという裏道から上がった、1番目の駐車場の隣の門から行けます。門から真っ直ぐに西方向へ斜面を降りずに進むと写真のお墓があります。なおMittaschも同じBerg Friedhofに眠っています。

Bosch Museum

HeidelbergのBosch Museum
(写真はこちらから引用致しました・Bosch Museum のHPはこちら)

 さて、今回書籍紹介と同時にちょこっと記述したHaber-Bosch法、100年かけてほぼ「完璧な技術」になりつつありますが、未だ大きな弱点があります。それは非常に高圧・高温の反応である、というだけではありません。次回以降はそれについてご説明出来ればと思います。

今後ともご指導ご鞭撻と、叱咤激励を宜しくお願い申し上げます。

  • 関連書籍
The following two tabs change content below.
Tshozo

Tshozo

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. IRの基礎知識
  2. ナノの世界に朗報?!-コラニュレンのkg合成-
  3. Late-Stage C(sp3)-H活性化法でステープルペプチ…
  4. 食品衛生関係 ーChemical Times特集より
  5. シグマ アルドリッチ構造式カタログの機能がアップグレードしたらし…
  6. ゴジラ級のエルニーニョに…出会った!
  7. イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加
  8. つぶれにくく元にも戻せる多孔性結晶の開発

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 角田試薬
  2. COX2阻害薬 リウマチ鎮痛薬に副作用
  3. 元素川柳コンテスト募集中!
  4. ChemDrawの開発秘話〜SciFinder連携機能レビュー
  5. 高純度フッ化水素酸のあれこれまとめ その1
  6. 文化勲章・受章化学者一覧
  7. 「超分子重合によるp-nヘテロ接合の構築」― インド国立学際科学技術研究所・Ajayaghosh研より
  8. 住友製薬-日本化薬、新規抗がん剤で販売提携
  9. 高分子の合成(上)(下)
  10. ダン・シングルトン Daniel Singleton

関連商品

注目情報

注目情報

最新記事

排ガス原料のSAFでデリバリーフライトを実施

ANAは日本時間の10月30日、排ガスを原料とするSustainable Aviation Fuel…

“つける“と“はがす“の新技術―分子接合と表面制御

お申込み・詳細はこちら日程2020年1月9日(木)・10日(金)定員20名  先着順…

【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキサジン環に苦しみ、笑った日々~

日産化学は、コア技術である「精密有機合成」や「生物評価」を活かして自社独自開発の…

モノクローナル抗体を用いた人工金属酵素によるエナンチオ選択的フリーデル・クラフツ反応

第234回のスポットライトリサーチは、大阪大学大学院理学研究科・安達 琢真さんにお願いしました。…

α,β-不飽和イミンのγ-炭素原子の不斉マイケル付加反応

α,β-不飽和イミンのγ-炭素原子のエナールへのエナンチオ選択的マイケル付加反応が開発された。新規環…

化学者だって数学するっつーの! :定常状態と変数分離

本記事では、原子軌道や分子軌道に電子が安定に存在するときの波動関数を調べるための方程式である、「時間…

Chem-Station Twitter

PAGE TOP