[スポンサーリンク]

元素

水素 Hydrogen -最も基本的な元素で、燃料電池の原料

[スポンサーリンク]

最も基本的な元素として知られている水素。爆発性があり、なんだか危なそうなイメージもありますが、近年では「環境に優しいエネルギー源」としてたいへん注目されています。

水素の基本物性データ

分類 非金属
原子番号・原子量 1 (1.00794)
電子配置 1s1
密度 0.0899kg/m3
融点 –259.14℃
沸点 –252.87℃
硬度
色・形状 無色・気体
存在度 地球 1520ppm、宇宙2.79 x 1010
クラーク数 0.87% (9位)
発見者 ヘンリー・キャベンディッシュ(1766年)
主な同位体 1H(99.9885%)、2H(0.0115%)、3H(β, 12.33年)
用途例 代替エネルギー源(H2)、燃料電池の原料(H2)、冷却材(液体水素)、同位体のへの利用(D)、細胞の発光材料(T)、化合物間の水素結合、核融合反応(T)、アンモニア合成(H2
前後の元素 なしー水素ヘリウム

最も小さな元素

水素は元素の中で最も小さな元素です。陽子は1つで、中性子を持っていません。1766年イギリスの化学者キャベンディッシュが単離し、ギリシャ語で「水を生ずるもの」という意味から名付けられました。地殻での元素の存在割合を表すクラーク数は全体で9位ですが、地球表面には酸素との化合物である水(H2O)として多く存在しています。

さらに、宇宙においては最も豊富に存在する元素で、総量数では約90%を占めており、宇宙空間だけでなく木星のような惑星も主成分は水素で構成されています。

 

ヘンリー・キャベンディッシュ

Henry Cavendish

Henry Cavendish

1731-1810年。水素が可燃性の気体で、燃焼時に水を生じることを証明した。その他クーロンの法則、オームの法則、ヒ素の合成など多くの大発見をしたが、全く発表を行わなかったという変わった人物。

彼の業績をたたえ、1874年英国ケンブリッジ大学にキャベンディッシュ研究所が設立された。歴代所長には電磁場方式で知られるマクスウェルや、原子核を発見したラザフォードなどがいる。

 

新しいクリーンエネルギーとして

現在多く使われているガソリン、石油などの化石燃料、その枯渇が叫ばれ初めて多くの年月がたっていますが、最近、化石燃料に変わる環境に優しいエネルギー源として水素エネルギーが注目されています。

水素の単体である、水素分子H2は最も軽い気体であり、酸素と反応しエネルギーを放出します。その際、生成物として水(H2O)しか放出しないので、環境に優しいのです。ただ現在、水素は主に化石燃料により作られています。これでは結局、化石燃料を用いていることと同じと言えるかもしれません。そのため、水素の製造から貯蓄、エネルギー変換技術までを含めた総合的な水素エネルギーシステムの確立が研究されています。

水素の製造方法

水素の製造方法 (出典:NEDO)

 

2014年に日本は、「水素・燃料電池戦略ロードマップ」を発表して、2040年を目標にCO2フリーの水素供給システムを全国に展開する構想を明らかとしています。現在の用途は、工業プロセスへの利用がほとんどですが、今後、様々なところで水素をエネルギーとした新しい製品が実用化されていく予定です。

水素エネルギーの用途:現在と未来(出典:資源エネルギー庁)

水素エネルギーの用途:現在と未来(出典:資源エネルギー庁)

 

水の電気分解の逆ー燃料電池

燃料電池は、「電池」と呼ばれていますが、乾電池のように使い捨てでなく、原料である水素(H2)と酸素(O2)が供給されれば永久に使用することができるため、「発電機」と呼ぶ方が適切かもしれません。

燃料電池の発電原理は非常に簡単で、水の電気分解の逆の化学反応を利用します。水の電気分解は自ら水素と酸素を作り出すわけですが、燃料電池では、水素と酸素が化学反応を起こし、水と電気エネルギーを放出するわけです。

実はこのような原理は最近になって発明されたものではありません。遠い昔の1839年にイギリスのグローブ(W.Grove)が、白金を電極、希硫酸を電解質としたグローブ電池により、水素と酸素から電気を取り出す燃料電池の原理を発明しています。同じ原理を利用した電池は、1965年に人類を初めて月に送ったアプロ宇宙船にも搭載されていますし、工業的な大型燃料電池はすでに製品化されています。ではなぜいまさら注目されたかというと、やはり、水しか生成しない環境に優しいエネルギーであるということと、近年の携帯機器の発達に伴い、バッテリーの重要性が高まっているからでしょう。燃料電池は水素さえ供給すればいちいち発電せずとも長時間駆動できるからです。

燃料電池のしくみ(出典:FCCJ 燃料電池実用化推進協議会)

燃料電池のしくみ(出典:FCCJ 燃料電池実用化推進協議会)

 空気中にある酸素O2と天然ガスなどから得られる水素を利用して化学反応を起こす。電池内では、空気極に酸素、燃料極に水素が供給され、電極中の触媒の働きで水素イオンとなり、電解中の触媒の働きで水素イオンになり、電解質中で水素イオンのやりとりが行われる。

 

2014年12月15日トヨタ自動車が「MIRAI(ミライ)」という世界初の燃料電池自動車(Fuel Cell Vehicle:FCV)を発売しました。水素タンクと燃料電池を車載し、水素ステーションから水素を補給する仕組みです。2016年3月にはホンダも「CLARITY(クラリティ)」というFCVを発売予定となっています。

2016-01-01_23-49-22

FCVの仕組みと購入可能(予定)なFCV

 

2009年より発売されている、家庭用コージェネレーションシステム「エネファーム」も燃料電池を使った製品です。エネファームは「エネルギー」と「ファーム(=農場)」を合成した造語であり、都市ガスから取り出した水素と、大気中の酸素を化学反応させて電気をつくり、その熱を活用しお湯をつくる仕組みとなっています。

2016-01-17_21-49-18

エネファームのしくみ

3つの同位体

水素(1H)は元素の中で唯一、中性子を持たない元素ですが、中性子をもつ重水素2H:略号D)、トリチウム3H:略号T)の3つの同位体が知られています。

重水素は1932年にアメリカの化学者ハロルド・ユーリー(Harold C. Urey)により発見され、この功績により、彼は1934年のノーベル化学賞を受賞しています。水素と比べて約2倍の重さがあるため、この重さの違い(同位体効果)によっておこる化学的・物理的効果を利用し化学反応への利用など様々な研究が行われています。

もうひとつの水素の同位体であるトリチウムは、天然からほとんど得ることができないため、原子炉内でリチウムに中性子照射して作られています。現在主に、分子生物学の実験において放射性同位体元素標識*として利用されています(トリチウムラベル)。

水素の同位体で現在もっとも力を入れて研究されているものは、重水素とトリチウムを利用することで莫大なエネルギーを得ることができる核融合反応です。核融合反応はほぼ無尽蔵のエネルギー源として、今世紀中の実用化が期待されています。

核融合反応(出典:IFE Forum)

核融合反応(出典:IFE Forum)

重水素とトリチウムの陽子である、重陽子dと三重陽子tを高速で衝突させると融合反応が起こり、17.3MeVもの大きなエネルギーが放出される。

 

*放射性同位体元素標識:トリチウムは非放射性の化合物とはほぼ同じ挙動を示すため、ある一部分を放射性同位体元素によって標識することで、いろいろなびっ質の生体内での代謝経路や試験管内での反応を追跡するために利用できる。

 

水素に関するケムステ関連記事

関連動画

 

関連書籍

webmaster

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. カリウム Potassium 細胞内に多量に含まれる元素
  2. いつ、どこで体内に 放射性物質に深まる謎
  3. ペッカ・ピューッコ Pekka Pyykkö
  4. 窒素 Nitrogen -アミノ酸、タンパク質、DNAの主要元素…
  5. 172番元素までの周期表が提案される
  6. 114番元素と116番元素が正式認可される
  7. 酸素 Oxygen -空気や水を構成する身近な元素
  8. 日本発元素がついに周期表に!!「原子番号113番」の命名権が理研…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 東芝やキヤノンが優位、微細加工技術の「ナノインプリント」
  2. 極性表面積 polar surface area
  3. 科学とは「未知への挑戦」–2019年度ロレアル-ユネスコ女性科学者日本奨励賞
  4. 酸素と水分をW保証!最高クラスの溶媒:脱酸素脱水溶媒
  5. 2008年12月人気化学書籍ランキング
  6. リンドラー還元 Lindlar Reduction
  7. 第八回 ユニークな触媒で鏡像体をつくり分けるー林民生教授
  8. Arena/エーザイ 抗肥満薬ロルカセリンがFDA承認取得
  9. 田辺製薬と三菱ウェルファーマが10月1日に合併へ‐新社名は「田辺三菱製薬」
  10. フタロシアニン鉄(II) : Phthalocyanine Iron(II)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年1月
« 12月   2月 »
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

【誤解してない?】4s軌道はいつも3d軌道より低いわけではない

3d 遷移金属は、多くが (3d)n(4s)2 という中途半端に 3d 軌道が埋まったまま 4s 軌…

第六回ケムステVプレミアレクチャー「有機イオン対の分子設計に基づく触媒機能の創出」

新型コロナ感染者数が爆増し、春の学会がまたほとんどオンラインになりました。残念で…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:③その他の材料

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

自己多層乳化を用いたマトリョーシカ微粒子の調製 〜油と水を混ぜてすぐ固めるだけ〜

岡山大学学術研究院自然科学学域(工)の渡邉貴一研究准教授と同大学院自然科学研究科博士前期課程の安原有…

【書籍】セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–

今回ご紹介する書籍「セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–」は、20…

芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合成法の開発に成功

第361回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)小松田 雅…

湘南ヘルスイノベーションパークがケムステVプレミアレクチャーに協賛しました

レジェンド化学者もしくは第一人者の長時間講演を完全無料で放映する、ケムステVプレ…

化学企業が相次いで学会や顧客から表彰される

武蔵エナジーソリューションズ株式会社に所属する研究者が、2022年度電気化学会技術賞(棚橋賞)を受賞…

第20回次世代を担う有機化学シンポジウム

第20回記念!今年は若手向けの新企画もやります!「若手研究者が口頭発表する機会や自由闊達にディス…

ビナミジニウム塩 Vinamidinium Salt

概要ビナミジニウム塩(Vinamidinium Salt)は、カルボン酸をヴィルスマイヤー・ハッ…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP