[スポンサーリンク]

化学者のつぶやき

B≡B Triple Bond

[スポンサーリンク]

近年、ますます発展しているホウ素化学分野。その美しい有機ホウ素分子群の中に、また新たな化合物が加わりました。

アセチレン(-C≡C-)や窒素(:N≡N:)分子には三重結合が存在しますが、同周期の13族元素ホウ素では、多重結合を持つ安定な化合物の例が限られていました。

その理由は至ってシンプルで、ホウ素原子には価電子(他の原子と結合するための手)が3つしかないので、炭素や窒素原子のような結合様式では、ホウ素原子周りがオクテット則(計8電子でハッピー)を満たさない電子状態になってしまうため(下図)。

rk061712-1.gif

そこで、ホウ素を含む多重結合化合物を合成する為には、金属(M)で還元して電子を加えてあげる、という方法がこれまでの主流でした(下図)[1]。

 

rk061712-2.gif
一方、中性分子として多重結合を持つ様々なホウ素化合物も数例報告されており、これらはルイス塩基や溶媒、隣接するヘテロ原子上からの電子供与によって安定化されています(下図)[2]。

 

rk061712-3.gif

また興味深い特例ですが、二つのB-H-B部位を持つバタフライ型ホウ素化合物の中心ホウ素間に三重結合性があるという報告が、理研の玉尾先生らのグループによって2010年に発表されています[3]。

rk061712-4.gif
さらに2010年には、初めてB≡O三重結合を持つ化合物の合成が報告されました(過去のつぶやき )。

 

rk061712-5.gif

そして、先日、ついに、ホウ素-ホウ素三重結合を持つ化合物「ジボリン」の合成・単離に成功したという論文がScience誌に報告されていたので紹介したいと思います。

Holger Braunschweig,* Rian D. Dewhurst, Kai Hammond, Jan Mies, Krzysztof Radacki, Alfredo Vargas Science 2012, 336, 1420;DOI: DOI: 10.1126/science.1221138.

ドイツのHolger Braunschweigらグループ[4]は、二つのN-ヘテロ環状カルベン(NHC)が配位した四臭化ジボラン 1とナトリウムナフタレンの反応により、BB三重結合を持つジボリン 3の合成に成功しています(下図)。また還元剤の当量を制御することで、ジブロモジボレン 2の単離にも成功しています。
rk061712-6.gif

 

rk061712-7.gif

以下、少しだけ細かい点を挙げます
———————————————————————————————————-
1234℃まで安定な、緑色結晶
炭素アセチレン類がほぼ無色なのに対してジボリン 3が緑色を示すのは、π-π*遷移に帰属される吸収波長を510 nmに持つため。カルベン炭素と相互作用してLUMOの準位が下がっていることが一因のよう。

2)二つのホウ素原子の酸化数は 0(ZERO)。これは世界初!

3)B≡B三重結合長は、1.449 Å。もちろん世界最短!化合物 2の二重結合長と比べ、6%程度短い。固体IR測定にてB≡B伸縮振動→1339cm-1

4)NHC-B-B-NHCは少し曲がっているが、ほぼ直線構造(173°)。

5)ホウ素NMRはそれぞれ1 = -4.8 ppm, 2 = 20 ppm, 3 = 39 ppm。配位数の低下に伴い低磁場シフトしている模様(炭素アセチレンのような環電流効果はみられないのでしょうか)。

6)炭素と異なり、二つのπ軌道は縮退していない

 

とまぁ、ざっくり特徴はこんな感じでしょうか。

また、論文中ではさらりと書いてありますが、13を混ぜることでも2が得られるという反応も、とても興味深い。

 

[その他の雑感]

(1)Robinsonはめちゃめちゃ惜しかった!
上述の通り、全く同じNHCを用いてB≡B化合物の合成に挑戦し、ジヒドロジボレンが得られることを2007年に報告していた[2a]。
如何に中間体(ホウ素ラジカル種?)が不安定か、その二量化過程が遅いか、と、そしてできてしまえばB-B結合はかなり安定であることを示していると思います。
(2)カルベンすげぇ(参照:過去のつぶやき)。
遷移金属錯体、有機触媒などいろんな分野で応用されていますが、あたらためて、カルベンの導入によって開かれた化学の多さに関心します。

(3)このグループはAuthorshipがいつもアルファベット順なので、実際はどの著者の手によって作られたのか解りません。そしてボスの頭文字は「B」。無敵![5]。
———————————————————————————————————-

NHC:→B相互作用に対応する分子軌道はもっとエネルギー準位の低いところにあることでしょう。この配位の強さが分子全体の安定化にどの程度効いているのか解りませんが、分子軌道を見る限り、三重結合に関与している二つのπ結合性軌道にカルベンからの作用はほとんどなし。
なので、カルベン以外の配位子でも、立体保護とある程度の配位力があれば、同様のアプローチでBB三重結合が合成できるかもしれません。実際、低温下マトリックス中では、OC:→B≡B←:COなる化合物が2002年に観測されています[6]。

いろんな配位子を持つBB三重結合だけではなく、中性化合物としてのAl≡Alや、B≡C、B≡Nを持つ化合物も近い将来間違いなく合成されることでしょう。

 

教科書が変わりますね。
この成果がヘテロ元素化学に与えるインパクトは、ものすごく大きいことと思います。

ホウ素、熱い!

 

関連文献

[1] Selected
(a) H. Klusik, A. Berndt, Angew. Chem. Int. Ed. Engl. 1981, 20, 870. DOI: 10.1002/anie.198108701.
(b) A. Moezzi, R. A. Bartlett, P. P. Power, Angew. Chem. Int. Ed. Engl. 1992, 31, 1082. DOI: 10.1002/anie.199210821.
(c) C.-W. Chiu, F.?P. Gabbaï, Angew. Chem. Int. Ed. Engl. 2007, 46, 6878. DOI: 10.1002/anie.200702299.
(d) C.-W. Chiu, F.?P. Gabbaï, Angew. Chem. Int. Ed. Engl. 2007, 46, 1723. DOI: 10.1002/anie.200604119.[2] Selected
(a) G. H. Robinson etal., J. Am. Chem. Soc., 2007, 129, 12412, DOI:10.1021/ja075932i.
(b) G. Bertrand etal., Science 2011, 333, 610, DOI: 10.1126/science.1207573.
(c) A. Berndt etal., Angew. Chem. 1988, 100, 956, DOI: 10.1002/ange.19881000712.
(d) A. Sekiguchi etal., J Am Chem Soc. 2006, 128, 422, DOI: 10.1021/ja0570741.

[3] (a) Y. Shoji, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, J. Am. Chem. Soc., 2010, 132, 8258, DOI: 10.1021/ja102913g.
(b) プレス記事
[4] Holger Braunschweig’s Group
[5] グループのサイトを見てみると、メンバー47人中頭文字がAもしくはBの研究者は7人のみ。Oh..
[6] M. Zhou et al., J. Am. Chem. Soc. 2002, 124, 12936. DOI: 10.1021/ja026257.

 

関連書籍

 

関連記事

  1. ノルゾアンタミンの全合成
  2. 【追悼企画】鋭才有機合成化学者ーProf. David Gin
  3. セルロース由来バイオ燃料にイオン液体が救世主!?
  4. 金属を超えるダイヤモンド ーボロンドープダイヤモンドー
  5. インタラクティブ物質科学・カデットプログラム第一回国際シンポジウ…
  6. 大学院生のつぶやき:研究助成の採択率を考える
  7. SciFinder Future Leaders in Chem…
  8. マイクロプラスチックの諸問題

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 緑茶成分テアニンに抗ストレス作用、太陽化学、名大が確認
  2. L-RAD:未活用の研究アイデアの有効利用に
  3. アロイ・フュルスナー Alois Furstner
  4. 四国化成の新規複素環化合物群
  5. 料理と科学のおいしい出会い: 分子調理が食の常識を変える
  6. 電気化学ことはじめ(2) 電位と電流密度
  7. 【ジーシー】新たな治療価値を創造するテクノロジー -BioUnion-
  8. タクミナ「スムーズフローポンプQ」の無料モニターキャンペーン
  9. 有機合成化学協会誌2020年11月号:英文版特集号
  10. 三洋化成の新分野への挑戦

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年6月
« 5月   7月 »
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP