[スポンサーリンク]

化学者のつぶやき

IASO R7の試薬データベースを構造式検索できるようにしてみた

[スポンサーリンク]

今回はSignals Notebookを使ってIASOの試薬データベースを構造検索できるようにしてみたので、その方法をご紹介します。
(IASO以外のデータベースを使っていても、そのデータベースから化合物のcas番号のリストをダウンロードできれば同じことができます!)

シリーズ一覧

電子実験ノートSignals Notebookを紹介します ①

電子実験ノートSignals Notebookを紹介します ②

電子実験ノートSignals Notebookを紹介します ③

IASO R7の試薬データベースを構造式検索できるようにしてみた

試薬を取り扱う研究室であれば、「試薬管理システム」を使っていると思いますが、皆さんはどの試薬管理システムを使っているでしょうか?

試薬管理システム – 企業6社の製品一覧とランキング

アカデミアでは、比較的コストが安い「IASO」を大学で契約しているという所も少なくないのではないでしょうか。しかし残念なことにIASOには構造式情報がなく、自分の研究室のInventoryにどのような試薬やビルディングブロックがあるかということが把握しづらいです。棚ごとに試薬を分類してある程度類似のビルディングブロックをまとめて保管することはできますが、複数の特徴を持つ化合物はどの棚に入れるか?という問題が出てくるため、結局完璧な管理方法にはなりません。

上記リンクの最近使われている試薬管理システムは構造検索もできて便利なものがありますが、とあるシステムに問い合わせると1ラボ単位で年間〇〇◯万円!?(値段は伏せますが)、とても大学や研究室単位で契約できる値段ではありませんでした。

そこで、IASOに登録されている化合物のデータを効率よく構造情報化して、「Signals Notebook(Standard Edition)」を使って検索できるようにしてみたので、その過程をご紹介しようと思います!

 

1.     IASOから登録試薬のリストを.csvで書き出す

1-1. IASO R7にログインし、Data Manager → 在庫リスト → 検索対象は特に選択せず全てのままLISTを選択

1-2. 在庫リストの全てのチェックボックスにチェックを入れてダウンロード

試薬情報がまとまったcsvファイルが手に入る。

2.     ChemCell(フリーソフト)でCAS番号をSMILESに変換

2-1. ChemCell(GitHub)のCode → Zip DownloadでChemCell(マクロ入り.xls)を入手します。

2-2. ChemCellを開きマクロを有効に。

2-3. 先程IASOからダウンロードした.csvファイルをexcelで開き、CAS No.と容量の列をコピーしてChemCellの適当なシートのB,C列にペーストする。「内容量」は「Amount」などに書き換えておく。

2-4. A1 cellに「Structure」、A2 cellに=getSMILES(B2)と入力(B2 = CAS番号のcell)

2-5. A列のD2からデータがあるセルまで全てを選択

(C1にカーソルを持っていき、[Ctrl+↓]で一番下に飛ぶので、Aの一番下のcellにカーソルをあわせて[Ctrl+Shift+↑]で一挙に選択できる)

2-6. [Ctrl+D]で全てのCAS番号を一挙にSMILESに変換

ここでデータ数によるが、2600件程度だと大体25~30分程度かかりました。CPUのマルチコア性能に依存します。

2-7. ここで一旦名前を付けてマクロ有効ブックで保存。マクロを無効にした通常の.xlsxファイルでも保存しておくとよい(後述)。

 

2. (追記) SMILESをPythonで取得する方法

先日(2024/03/22)行われたSignals Notebookのユーザーミーティングで講演させて頂きました。
実は、上記のChemCellを使う方法は誰にでもできる簡単な手法である反面、PCのメモリをだいぶ食ってしまうのと、変換精度が完璧ではない(excel上でエラーも含む)ので、ヒット率が9割を下回る結果でした。そこで、以下のサイトを参考に、pythonを使ってCAS番号をSMILESに変換する方法を確立しました。

Win環境Mac環境

【動作を確認した開発環境】 Windows: Python 3.12.2、pubchempy 1.0.4, Mac: Python 3.11.8、pubchempy 1.0.4

メリットとしては、SMILESへの変換精度がよいです。約95%の試薬が一括変換できました。また、PCのメモリを圧迫せず、1時間程度で2400化合物ほどの変換処理を完了しました。
ここに書くとだいぶ長いですので、Webサーバーにアップロードした講演資料とマニュアルをご参照ください。
※Python素人が公開されている方法を使って作成したものですので、もっと効率の良い方法はあると思います。もし詳しい方でコメントがあれば、ぜひご連絡いただければと思います。

 

3.     ChemDraw for ExcelでSMILESを構造式に変換

3-1. シートをChem Office worksheetに変換する。

3-2. 生成したSMILESを全選択し、ConvertからConvert SMILES to Structure

(ここは結構さっくり、2,3分で終わりました。もともとSMILESに変換しそびれていた83個のセルは正常に変換できませんでしたと言われました。CAS to SMILESの問題です。)

3-3. 構造式に変換できなかったCellのみデータを消去したい。A2 cellにカーソルをあわせて[Ctrl+Shift+↓]でA2以下のcellを全選択し、右クリック → 値と数式のクリアによって構造情報のみを残す

4.     SDファイル(.sdf)で書き出してSignals NotebookのMaterialsに一括登録

4-1. SDファイルで書き出す際に、A2 cellに構造が入っていないとエラーになり書き出せないので、はじめに構造が出てくるcellまで空行を消去する。

4-2. Inport/Export → Export Table → 名前を付けて.sdfで保存

4-3Signals NotebookMaterials.sdfを読み込む。Materials内のReagents (SNB)()を選択して、右上のAdd NewからBulk Import Compounds.sdfファイルを読み込みます。

Materialsは初期設定ではONになっていないので、System Configurationで設定する必要がある。長くなるのでこちらは次回!

5.     実際に検索してみると・・・

例えば、名前検索で「ベンジルアルコール構造」を部分構造にもつ化合物を検索しようと思ってもなかなか難しいはず。ベンジルアルコールの構造を描きSubstructure Searchをし、検索範囲をMaterialsに絞り込むとこの通り。ベンジルアルコール構造を持つものだけがヒットしました。

ただし、今回の方法では、CAS to SMILESが100%の精度ではないため、完璧な構造データベースへの移行はできていません。構造式が入らなかった化合物は、ChemOffice Worksheetに変換する前の状態で名前を付けて保存しておいた.xlsxファイルを開けば確認可能。マクロ有効ブックやChemOffice Worksheetはデータ量が多く重いので、データ量を減らしたsheetで確認する方がよい。

現状では、IUPAC名を出してくれないIASOではCAS to Structureしか構造式に一括変換する手法は存在しないため、変換漏れしたものは手作業で入力するしかない。

なにか良い方法を知っている人がいればご連絡いただければ非常に助かります!

6.     継続的なデータベースの更新方法

IASOでData Managerを開き、登録薬品リストをクリック。集計期間を指定してLISTを押すと、その期間中に登録された試薬を集計できます。
ダウンロードボタンでcsvファイルをダウンロードできます。

 

Signals Notebookの設定は次回記事で!

関連リンク

電子ノートSignals Notebookを紹介します!

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. 文具に凝るといふことを化学者もしてみむとてするなり⑱:Apple…
  2. MEDCHEM NEWS 31-4号「RNA制御モダリティ」
  3. 実験を加速する最新機器たち|第9回「有機合成実験テクニック」(リ…
  4. 日本薬学会第139年会 付設展示会ケムステキャンペーン
  5. 2022年ノーベル化学賞ケムステ予想当選者発表!
  6. 作った分子もペコペコだけど作ったヤツもペコペコした話 –お椀型分…
  7. ネオ元素周期表
  8. 2024年ノーベル化学賞ケムステ予想当選者発表!

注目情報

ピックアップ記事

  1. ライオン、男性の体臭の原因物質「アンドロステノン」の解明とその抑制成分の開発に成功
  2. 2-プロパノールに潜む過酸化物生成の危険
  3. 化学における特許権侵害訴訟~特許の真価が問われる時~
  4. がん細胞をマルチカラーに光らせる
  5. 「あの人は仕事ができる」と評判の人がしている3つのこと
  6. 学士院賞:数論幾何学の加藤和也京大大学院教授ら10人に
  7. 共有結合性リガンドを有するタンパク質の網羅的探索法
  8. 第65回―「タンパク質代替機能を発揮する小分子の合成」Marty Burke教授
  9. 2つの触媒反応を”孤立空間”で連続的に行う
  10. 触媒の貴金属低減化、劣化対策の技術動向【終了】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP