[スポンサーリンク]

一般的な話題

低分子化合物の新しい合成法 コンビナトリアル生合成 生合成遺伝子の利用法 Total Synthesis vs Total Biosynthesis

[スポンサーリンク]

 

天然物は、人智を超えた多様な構造や活性を有しており、医薬品の候補化合物となるものも多く存在します。しかし、天然物は極微量しか得られない、植物などは成長が遅い、微生物は培養が困難なものが多いといった問題があるため、資源の大量確保は難しいとされてきました。そのため、大量供給の方法として化学合成法が用いられてきました。

化学合成以外の方法として、微生物の発酵で生産されるものなどもありましたが、複雑な生合成経路をすべて異種発現させることは難しいとされてきました。しかし、ポストゲノムの時代になり、複雑な生合成経路を完全に異種発現させたり、生合成遺伝子を入れ替えたりして新規化合物を合成するコンビナトリアル生合成という手法の研究が盛んになってきました。

 

生合成研究は役に立つの?

 

学部生の頃、天然物化学の授業で生合成経路の説明を受けましたが、生合成経路の研究が何の役に立つのかさっぱり分かりませんでした

人体の生合成経路の研究なら病気のメカニズムや薬の作用機序などに関係すると思いましたが、微生物や植物の生合成経路の研究がどのような意味を持つのか、全然伝わってきませんでした!

 

ポストゲノムの時代になり遺伝子工学の研究が加速しました。遺伝子工学手法と組み合わせることにより、生合成研究は、希少有用物質の安定供給や、新規化合物の創出 • ライブラリー化に直結するようになりました。つまり、天然物の生合成に関与する遺伝子を特定できれば、異種発現により天然物を大量生産できるようになる可能性があるのです。この点において、生合成研究は非常に価値のあるものだと言えます。

※異種発現とは

異種発現とは、宿主細胞が本来持っていない遺伝子を外部から導入し、発現させることです。例えば、植物の持つ遺伝子を大腸菌に導入して発現するようにしてやることなどを異種発現と言います。

 

異種発現による物質生産

 

異種発現による物質生産は昔から行なわれていましたが、複雑な天然物の生合成経路を完全に再現するという報告が多くなりだしたのは、ポストゲノムの時代になってからです。

今回は、その1つの例としてechinomycinの全生合成を簡単に紹介します。

 

echinomycin heterologous.gif

’’Total Biosynthesis of Antitumor Nonribosomal Peptides in Escherichia coli.?’’

Watanabe, K.; Hotta, K.; Praseuth, A. P.; Koketsu, K.; Migita, A.; Boddy, C. N.; Wang, C. C.; Oguri, H.; Oikawa, H.? Nat. Chem. Biol.?, 2, 423-428. (2006) DOI:10.1038/nchembio803

 

echinomycinは、Streptomyces lasaliensisから単離された化合物です。北海道大学の及川らのグループは、S. lasaliensisからechionomycinの生合成に関わる遺伝子を抽出し、大腸菌にその遺伝子を導入し、大腸菌にechinomycinを生合成させるようにしました。

つまり、複雑で多段階からなる化学合成を行なわずに、大腸菌を培養するだけでechinomycinを合成できるようにしたのです。これは、Total Synthesis (全合成)ならぬTotal Biosynthesis (全生合成)として報告されました。

 

この方法のメリットは、

1. 異種発現することにより、物質生産の速度が飛躍的に上がる。効率的!

2. 一度遺伝子を導入してしまえば、後は培養するだけで化合物が得られる。(安価!

3. 希少資源由来の天然物でも、大量供給が可能(環境にやさしい!

※大腸菌は20?30分で一回分裂する。

 

コンビナトリアル生合成

コンビナトリアル生合成とは、生合成経路の改変•組み合わせにより、非天然化合物を生産する手法です。

天然に存在する生物から生合成遺伝子を取り出し、異種発現により生合成経路を再現するのに加え、生合成に関わる遺伝子を組み換えて新たな化合物を生産させようという研究です。この研究自体は、昔から行なわれていたのですが、盛んになりだしたのは、遺伝子情報の取得が簡単になったポストゲノムの時代になってからだと思います。

今回は、ハロゲン化酵素(halogenase)をコードする遺伝子を入れ替えるだけで、ハロゲンの位置の異なった化合物を一挙に合成した例をお示し致します。

 

 

halogenase combinatorial biosynthesis.gif

”Combinatorial biosynthesis of antitumor indolocarbazole compounds”

César Sánchez, Lili Zhu, Alfredo F. Braña, Aaroa P. Salas, Jürgen Rohr, Carmen Méndez, and José A. Salas

Proc. Natl. Acad. Sci. USA, 102, 461-466, (2005) DOI:10.1073/pnas.0407809102

 

この論文では、インドール環の5,6,7位をそれぞれハロゲン化するPyrH, ThaI, RebHというハロゲン化酵素をコードする遺伝子を組み替えることにより、ハロゲンの位置の異なる類縁体を合成しています。

このように、コンビナトリアル生合成では、修飾酵素をコードする遺伝子を入れ替えるだけで置換基の位置 • 種類を変えることが可能です。また、化合物の骨格構築に関わる酵素をコードする遺伝子を入れ替えれば、違う骨格の化合物を合成することもできます。

 

遺伝子を入れ替えるだけで本当に多様な化合物が作れるのか?

コンビナトリアル生合成で本当に多様性に富んだ化合物が作れるのでしょうか?

その有用性は、自然界の生合成経路を見れば明白です。例えば、Strictosidineです。

strictosidine.gif

Strictosidineは、Camptothecin, Vinblastine, Reserpine, Strychineなど多数の天然物の共通の中間体です。つまり、Strictosidineをつくる遺伝子までは同じで、その後が異なるだけで、こんなにも多様な構造の分子を合成することが可能なのです。

 

将来の有機合成

 

将来的には、望みの構造の有機化合物を生物を用いて全合成することが可能になるのでないでしょうか?まず、合成したい化合物の逆合成解析をして、それぞれのステップに酵素を割り振っていくのではないでしょうか?「ここのメチル基はSAM methyltrasferaseで付けよう!」「この環は、prenyl transferase(PT)でGGPPをくっつけた後で、cyclaseで巻かせよう!」「この水酸基はP450で入れよう!」「ここのアミノ酸部分はNRPSでつくろう!」などのように。

この方法の一番のメリットは、一度発現系を構築してしまえば、化合物の合成に必要なのは培地だけという点です。各ステップごとの精製操作も必要ありません。また、遺伝子を入れ替えるだけで、類縁体の合成や化合物ライブラリーの構築もできます。

 

総括

以上、筆者zeroの個人的な見解なので、今後、異種発現による物質生産やコンビナトリアル生合成がどのように発展するかは分かりません。また、この手法にはまだまだ問題点があります。(酵素の基質特異性、収量、発現ホストの選択、プロモーターの選択、レギュレーターなど)しかし、この研究領域が大きなポテンシャルを秘めていることは確かだと思います。天然物の合成というと、化学的手法による全合成を思い浮かべると思いますが、このように生物を用いて合成させるという手法も最近目覚ましい進歩を遂げています。

 

関連書籍

ゼロ

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. 安定なケトンのケイ素類縁体“シラノン”の合成 ケイ素—酸素2重結…
  2. アメリカで Ph.D. を取る -Visiting Weeken…
  3. このホウ素、まるで窒素ー酸を塩基に変えるー
  4. 投票!2015年ノーベル化学賞は誰の手に??
  5. C-H結合活性化を経るラクトンの不斉合成
  6. 『元素周期 ~萌えて覚える化学の基本~』がドラマCD化!!!
  7. “アルデヒドを移し替える”新しいオレフィ…
  8. やっぱりリンが好き

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アマドリ転位 Amadori Rearrangement
  2. 求核置換反応 Nucleophilic Substitution
  3. 合同資源産業:ヨウ素化合物を作る新工場完成--長生村の千葉事業所 /千葉
  4. 触媒的プロリン酸化を起点とするペプチドの誘導体化
  5. 世界医薬大手の05年売上高、欧州勢伸び米苦戦・武田14位
  6. DNAに電流通るーミクロの電子デバイスに道
  7. バリー・シャープレス Karl Barry Sharpless
  8. 海外留学ってどうなんだろう? ~きっかけ編~
  9. 第八回ケムステVシンポジウム「有機無機ハイブリッド」を開催します!
  10. 化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ものづくりのコツ|第10回「有機合成実験テクニック」(リケラボコラボレーション)

理系の理想の働き方を考える研究所「リケラボ」とコラボレーションとして「有機合成実験テクニック」の特集…

第13回ケムステVシンポジウム「創薬化学最前線」を開催します!

第12回開催告知をお知らせしたばかりですが、第13回もあります!COVID-19の影響で、世…

Grignard反応剤が一人二役!? 〜有機硫黄化合物を用いるgem-ジフルオロアルケン類の新規合成法〜

第284回のスポットライトリサーチは、名古屋大学トランスフォーマティブ生命分子研究所・前川侑輝 博士…

第134回―「脳神経系の理解を進める分析化学」Jonathan Sweeder教授

第134回の海外化学者インタビューはジョナサン・スウィードラー教授です。イリノイ大学アーバナ・シャン…

第十二回ケムステVシンポ「水・有機材料・無機材料の最先端相転移現象 」

12月になりましたね。大好評のケムステシンポも今年は残りあと2回となりました。第12回となる…

概日リズムを司る天然変性転写因子の阻害剤開発に成功

第283回のスポットライトリサーチは、信州大学大学院総合理工学科農学専攻(大神田研究室)・細谷 侑佑…

アニリン類のC–N結合に不斉炭素を挿入する

アニリン類の炭素–窒素(C–N)結合に”不斉炭素を挿入”してキラルベンジルアミンとする手法が開発され…

フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに向けて~

第282回のスポットライトリサーチは、大阪府立大学 大学院理学系研究科(松坂研究室)・山本大貴さんに…

Chem-Station Twitter

PAGE TOP