[スポンサーリンク]

一般的な話題

世界が終わる日までビスマス

GREEN201206Bi.PNG

昔に中学校か何かで見た周期表を思い出してください。質量数が最も小さな安定同位体は水素1(1H)ですが、質量数が最も大きな安定同位体は何でしょうか?

「ビスマスです!」

いえいえ、ビスマスに安定同位体はありませんよ!?

未来を予測し、過去を懐古し、極微の世界を見通し、宇宙の最果てに光を当てる。想像の翼ではたどりつけないその先へ。手の届かない宇宙スケールから、わたしたちの住む地域スケールまで、そこにひそむサイエンスの話題にご招待。はじまりはそう、蒼鉛の別名を持った金属、ビスマスでした。

 

  • ビスマスは不安定元素!?

ビスマスは安定元素ではありません。ほんの数年前に、実験で、はっきりとくつがえされました[1]。天然に産する唯一のビスマス同位体であるビスマス209(209Bi)でさえ、半減期2000京年で崩壊していくとのことです。様式は、陽子2個と中性子2個をまとめて放出するアルファ崩壊です。そのため、先ほど出題しました「質量数が最も大きな安定同位体」の答えは、鉛208(208Pb)です。

それにしても、2000京年とは凄まじい数字です。宇宙がビックバンで誕生してから現在までの年齢が100億年~200億年と言われていますから、文字どおり桁違いの数字です。宇宙のエントロピーが増大しきって熱的死を迎える時期が、かなり短めの試算だと100京年と言われていますが、ビスマスの半減期はこの数値をはるかに凌駕しています。人類が積み重ねてきた文明史のレベルで言えば、ビスマスはほとんどそのまま変わらないというわけです。bi1.PNG

ビスマスの崩壊は2000京年でやっと半減するスピード

このペースだと、超新星の輝いたあの日から、世界が終わる日まで、ビスマスはほとんどビスマスのままでしょう。ここまでゆっくり崩壊するとなると、正確に測定するためには、どれだけ高性能の検出器が必要なのでしょうね。

 

  • 放射線はもともと身近にある

ビスマスはわたしたちの生活になくてはならない元素です。ビスマスの用途として、とくに有名なもののひとつが、ウッドメタルと呼ばれる低融点合金です。ウッドメタルに必要な原材料の半分がビスマスです。この他、電子機器などに使われる最先端材料にも、ビスマスが活躍しています。

また、ビスマスの結晶は、虹色に輝く特有の美しさを持ち、インテリアの置物や飾りとしても流通しています。単体のビスマスは、表面のみが酸素と反応して、酸化被膜を作ります。他の金属と異なり、ビスマスは氷と同じく、液体から固体に状態変化すると体積が増える性質があります。そのため、ビスマスが液体から固体に状態変化するとき、酸化膜の厚さに微細なむれが生じます。虹色の色彩は、ビスマスに表面にあるこの微細構造によって、光が干渉してできた構造色です。

さらに、ビスマス塩には除菌作用があり、以前からにも使われてきました。最近になってピロリ菌にもビスマス塩がよく効くことが分かり、従来の標準治療にビスマス塩を加えた方法で臨床試験が進められ、最終の結果が報告されています[2]。

 

GREEN201207Bi.PNG

ビスマス209がタリウム205とアルファ粒子に変化

こういう世相なので、誰が読んでいるか分からないインターネットで、バッサリとはあまり書きたくないのですが、ビスマス原子が崩壊すればその分、放射線が出ます。その量がどれほど少ないかは、各自で計算できるでしょう。

ありもしないリスクを過大評価して、役に立つべきものを忌避してしまうことは、地球環境にもわたしたち人類にも、幸せな望むべき結果を、もたらさないはずです。ビスマスの話だったはずですが、ここは、放射線はもともと身近にある、ことを指摘して結びとしましょうか。

 

  • 参考論文
[1] 天然ビスマスからアルファ粒子を実際に検出

“Experimental detection of a-particles from the radioactive decay of natural bismuth” Pierre de Marcillac et al. Nature 2003 DOI: 10.1038/nature01541

[2] 従来法に加えてビスマスをヘリコバクターピロリ菌に対する治療に使用した第3相臨床試験結果

“Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy: a randomised, open-label, non-inferiority, phase 3 trial” Peter Malfertheiner et al. The Lancet 2011 DOI: 10.1016/S0140-6736(11)60020-2

 

  • 関連物品

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. エステルをアルデヒドに変換する新手法
  2. Micro Flow Reactorで瞬間的変換を達成する
  3. ここまでできる!?「DNA折り紙」の最先端 ② ~巨大な平面構造…
  4. ジェフ・ボーディ Jeffrey W. Bode
  5. アミロイド認識で活性を示す光触媒の開発:アルツハイマー病の新しい…
  6. 炭素をつなげる王道反応:アルドール反応 (2)
  7. ACD/ChemSketch Freeware 12.0
  8. プロドラッグの話

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 理系のための口頭発表術
  2. ナノ粒子の安全性、リスク評価と国際標準化の最新動向【終了】
  3. カルボニル-エン反応(プリンス反応) Carbonyl-Ene Reaction (Prins Reaction)
  4. 招福豆ムクナの不思議(6)植物が身を護る化学物資
  5. 米デュポンの第2四半期は減益、市場予想を下回る
  6. 薬価4月引き下げ 製薬各社は「アジア」「非医薬」に活路
  7. ヒンスバーグ チオフェン合成 Hinsberg Thiophene Synthesis
  8. 含ケイ素四員環 -その1-
  9. オンライン座談会『ケムステスタッフで語ろうぜ』開幕!
  10. 有機化学美術館へようこそ―分子の世界の造形とドラマ

関連商品

注目情報

注目情報

最新記事

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

Chem-Station Twitter

PAGE TOP