[スポンサーリンク]

一般的な話題

世界が終わる日までビスマス

GREEN201206Bi.PNG

昔に中学校か何かで見た周期表を思い出してください。質量数が最も小さな安定同位体は水素1(1H)ですが、質量数が最も大きな安定同位体は何でしょうか?

「ビスマスです!」

いえいえ、ビスマスに安定同位体はありませんよ!?

未来を予測し、過去を懐古し、極微の世界を見通し、宇宙の最果てに光を当てる。想像の翼ではたどりつけないその先へ。手の届かない宇宙スケールから、わたしたちの住む地域スケールまで、そこにひそむサイエンスの話題にご招待。はじまりはそう、蒼鉛の別名を持った金属、ビスマスでした。

 

  • ビスマスは不安定元素!?

ビスマスは安定元素ではありません。ほんの数年前に、実験で、はっきりとくつがえされました[1]。天然に産する唯一のビスマス同位体であるビスマス209(209Bi)でさえ、半減期2000京年で崩壊していくとのことです。様式は、陽子2個と中性子2個をまとめて放出するアルファ崩壊です。そのため、先ほど出題しました「質量数が最も大きな安定同位体」の答えは、鉛208(208Pb)です。

それにしても、2000京年とは凄まじい数字です。宇宙がビックバンで誕生してから現在までの年齢が100億年~200億年と言われていますから、文字どおり桁違いの数字です。宇宙のエントロピーが増大しきって熱的死を迎える時期が、かなり短めの試算だと100京年と言われていますが、ビスマスの半減期はこの数値をはるかに凌駕しています。人類が積み重ねてきた文明史のレベルで言えば、ビスマスはほとんどそのまま変わらないというわけです。bi1.PNG

ビスマスの崩壊は2000京年でやっと半減するスピード

このペースだと、超新星の輝いたあの日から、世界が終わる日まで、ビスマスはほとんどビスマスのままでしょう。ここまでゆっくり崩壊するとなると、正確に測定するためには、どれだけ高性能の検出器が必要なのでしょうね。

 

  • 放射線はもともと身近にある

ビスマスはわたしたちの生活になくてはならない元素です。ビスマスの用途として、とくに有名なもののひとつが、ウッドメタルと呼ばれる低融点合金です。ウッドメタルに必要な原材料の半分がビスマスです。この他、電子機器などに使われる最先端材料にも、ビスマスが活躍しています。

また、ビスマスの結晶は、虹色に輝く特有の美しさを持ち、インテリアの置物や飾りとしても流通しています。単体のビスマスは、表面のみが酸素と反応して、酸化被膜を作ります。他の金属と異なり、ビスマスは氷と同じく、液体から固体に状態変化すると体積が増える性質があります。そのため、ビスマスが液体から固体に状態変化するとき、酸化膜の厚さに微細なむれが生じます。虹色の色彩は、ビスマスに表面にあるこの微細構造によって、光が干渉してできた構造色です。

さらに、ビスマス塩には除菌作用があり、以前からにも使われてきました。最近になってピロリ菌にもビスマス塩がよく効くことが分かり、従来の標準治療にビスマス塩を加えた方法で臨床試験が進められ、最終の結果が報告されています[2]。

 

GREEN201207Bi.PNG

ビスマス209がタリウム205とアルファ粒子に変化

こういう世相なので、誰が読んでいるか分からないインターネットで、バッサリとはあまり書きたくないのですが、ビスマス原子が崩壊すればその分、放射線が出ます。その量がどれほど少ないかは、各自で計算できるでしょう。

ありもしないリスクを過大評価して、役に立つべきものを忌避してしまうことは、地球環境にもわたしたち人類にも、幸せな望むべき結果を、もたらさないはずです。ビスマスの話だったはずですが、ここは、放射線はもともと身近にある、ことを指摘して結びとしましょうか。

 

  • 参考論文
[1] 天然ビスマスからアルファ粒子を実際に検出

“Experimental detection of a-particles from the radioactive decay of natural bismuth” Pierre de Marcillac et al. Nature 2003 DOI: 10.1038/nature01541

[2] 従来法に加えてビスマスをヘリコバクターピロリ菌に対する治療に使用した第3相臨床試験結果

“Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy: a randomised, open-label, non-inferiority, phase 3 trial” Peter Malfertheiner et al. The Lancet 2011 DOI: 10.1016/S0140-6736(11)60020-2

 

  • 関連物品

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. セブンシスターズについて② ~世を統べる資源会社~
  2. 信じられない!驚愕の天然物たち
  3. 「重曹でお掃除」の化学(その2)
  4. レビュー多くてもよくね?
  5. 多検体パラレルエバポレーションを使ってみた:ビュッヒ Multi…
  6. 一流の化学雑誌をいかにしてつくるか?
  7. 変わったガラス器具達
  8. そこまでやるか?ー不正論文驚愕の手口

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ビュッヒ・フラッシュクロマト用カートリッジもれなくプレゼント!
  2. ダンハイザー環形成反応 Danheiser Annulation
  3. ESI-MSの開発者、John B. Fenn氏 逝去
  4. マシュー・ゴーント Matthew J. Gaunt
  5. 京都賞―受賞化学者一覧
  6. ひらめききらめく:/1 「創」のとき、夢の鼓動 /北海道
  7. 東亜合成と三井化学、高分子凝集剤の事業統合へ
  8. 中学入試における化学を調べてみた 2013
  9. 第8回XAFS討論会
  10. ナノ粒子で疾病の発生を容易に追跡

関連商品

注目情報

注目情報

最新記事

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明

第161回目のスポットライトリサーチは、早田敦 (はやた あつし)さんにお願いしました。早田…

イグノーベル化学賞2018「汚れ洗浄剤としてヒトの唾液はどれほど有効か?」

Tshozoです。今年もIg Nobel賞、発表されましたね。色々と興味深い発表が続く中、NHKで放…

最近のwebから〜固体の水素水?・化合物名の商標登録〜

皆様夏休みはいかがお過ごしでしたでしょうか。大学はそろそろ後学期が始まってきたところです。小…

PAGE TOP