[スポンサーリンク]

化学者のつぶやき

タミフルの新規合成法

[スポンサーリンク]

An iron carbonyl approach to the influenza neuraminidase inhibitor oseltamivir.
Bromfield, K. M.; Graden, H.; Hagberg, D. P.; Olsson, T.; Kann, N. Chem. Commun. 2007, 3183.  DOI:10.1039/b703295a

現在もっとも知名度の高い医薬品であろうタミフル。副作用疑惑で何かと世間を騒がせていますが、大変良く効く抗インフルエンザ薬であることは疑いありません。世論に流され安直に使用停止、という結末にならないよう、きちっとした科学的データを示し、適正使用に向けての取り組みを着実に進めていって欲しいものです。

さて最近、タミフルの新たな合成法がスウェーデンのNina Kann准教授らによって、Chemical Communication誌に報告されました。鍵工程として鉄カルボニルの化学を利用していることが特徴です。

タミフルの合成で難しい点は、シクロヘキセン環上に連続する不斉中心をいかに立体選択的に構築するか、ということです。これまでに、米ハーバード大のコーリー教授、東大薬学部の柴崎正勝教授によってタミフルの不斉合成が報告されています。いずれの例も独自に開発した不斉触媒を用いて、足がかりとなる不斉中心を上手く構築しています (詳細はこちらの記事をご参照ください)。

今回報告されたルートでは、面不斉をもつキラル鉄カルボニル-ジエン錯体を巧みに用いた、立体選択的な官能基導入が実現されています。この鉄錯体は以下の通り、キラル補助基の付加後、HPLCで分離し、補助基を酸条件で除去して調製しています。0価の鉄原子は電子豊富であり、隣接位のカルボカチオンを安定化できる、ということが変換のポイントになります。

CStamiflu

 

このカチオン性錯体は、求核剤(BocNH2)存在下に付加を受けます。鉄カルボニル部位の反発を避ける方向から反応が起きます。引き続き、鉄カルボニルを酸化的に除去して、カルバメート基のDirecting Effectを利用して、mCPBAエポキシ化を立体選択的に進行させています。

CStamiflu2

 

タミフルのような、シクロヘキセン骨格を持つ化合物を綺麗に作ろうとすると、大抵の合成化学者はDiels-Alder反応を使いたがるのではと思います。選択性の予測が可能で、かつ信頼性が大変高いためです。一方で今回のルートは、 炭素骨格が最初からそろっている基質に官能基を生やしていくルートであり、独創的なアプローチのルートだと思えます。

ただ勿論完璧なルートというわけではありません。いくつか簡単に思い付くデメリットとしては、①有毒で酸素に不安定なカルボニル錯体を当量用いなければならない、②高価なキラル補助基を用いた光学分割が必要で、基質の半分が不要になってしまう などでしょうか。

「有毒な試薬をたくさん使って医薬品を作ることに何の意味があるのか?とても実用に堪えないじゃないか?」という批判は、こういった類の仕事につきものです。とはいえ、それはもっとも簡単なレベルの批判だと思えますが。

そういったルートでも、将来的に問題点を解決するブレイクスルーが達成されれば、一挙に実用候補にあがるルートになるかもしれません。また、別ルートの合成研究からは、今まで気づかなかったハードルが浮き彫りになることも多く、既存法に対する問題提起を行うことにもつながります。 勿論、より良い合成ルート確立に向けてのたたき台としても使えます。確立されたルートが沢山あるほど、効率よく作るためのヒントが増え、良いものが開発しやすくなるわけですから。

もちろん、ロシュ社のプロセスルートは相当に完成度が高く、いくら新たな高効率ルートが開発されたとしても、それと直接とって代わることは当面なさそうです。アカデミックルートへの切り替えはロシュにとって旨味がない、という認識はおそらく正しいでしょう。 とはいえ将来物質特許が切れたとき、つまり他の製薬会社がジェネリックとして売り出すときに、ルートの一部や改良ルートが使われるのではないか――こういった話であれば、現実的可能性はありそうです(勿論全くそのまま、と言うわけにはいかないでしょうが)。

いずれにせよ学術領域では、「制約の多い企業研究者が考えつかないような視点・発想での合成ルートを考案・提案・実現する」ことこそが重要なのだと思います。

関連リンク

Fresh approach to Tamiflu Production(Chemistry World)

オセルタミビル(Wikipedia)

Oseltamivir(Wikipedia)

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 反応中間体の追跡から新反応をみつける
  2. 「化学の匠たち〜情熱と挑戦〜」(日本化学会春季年会市民公開講座)…
  3. ニコラウ祭り
  4. ゴキブリをバイオ燃料電池、そしてセンサーに
  5. tRNAの新たな役割:大豆と微生物のコミュニケーション
  6. 光触媒ラジカル付加を鍵とするスポンギアンジテルペン型天然物の全合…
  7. 加熱✕情熱!マイクロ波合成装置「ミューリアクター」四国計測工業
  8. 一重項励起子開裂を利用した世界初の有機EL素子

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アルキンから環状ポリマーをつくる
  2. おっさんマウスが小学生マウスを襲う?待ったの決め手はフェロモンにあり
  3. ちっちゃい異性を好む不思議な生物の愛を仲立ちするフェロモン
  4. バルビエ・ウィーランド分解 Barbier-Wieland Degradation
  5. 自動車用燃料、「脱石油」競う 商社、天然ガス・バイオマス活用
  6. 有機合成化学協会誌2020年2月号:ナノポーラス スケルトン型金属触媒・フッ化アルキル・2,3,6-三置換ピリジン誘導体・ペプチドライゲーション・平面シクロオクタテトラエン・円偏光発光
  7. 高校教科書に研究が載ったはなし
  8. 有機光触媒を用いたポリマー合成
  9. 2009年度日本学士院賞、化学では竜田教授が受賞
  10. Ph.D.化学者が今年のセンター試験(化学)を解いてみた

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学者のためのエレクトロニクス講座~有機半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第120回―「医薬につながる複雑な天然物を全合成する」Richmond Sarpong教授

第120回の海外化学者インタビューは、リッチモンド・サーポン教授です。カリフォルニア大学バークレー校…

DNAナノ構造体が誘起・制御する液-液相分離

第274回のスポットライトリサーチは、佐藤佑介 博士にお願いしました。液-液相分離は近年の一…

常圧核還元(水添)触媒 Rh-Pt/(DMPSi-Al2O3)

一般的な特長Rh-Pt/(DMPSi-Al2O3)は、優れた活性を示す水素還元(水添)触媒です。…

世界最高の耐久性を示すプロパン脱水素触媒

第273回のスポットライトリサーチは、北海道大学触媒科学研究所・中谷勇希さんにお願いしました。…

第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士

第119回の海外化学者インタビューは、アーロン・ライト博士です。パシフィック・ノースウエスト国立研究…

化学者のためのエレクトロニクス講座~化合物半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

次世代電池の開発と市場予測について調査結果を発表

この程、TPC マーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、 次…

Chem-Station Twitter

PAGE TOP