[スポンサーリンク]

化学者のつぶやき

タミフルの新規合成法

[スポンサーリンク]

An iron carbonyl approach to the influenza neuraminidase inhibitor oseltamivir.
Bromfield, K. M.; Graden, H.; Hagberg, D. P.; Olsson, T.; Kann, N. Chem. Commun. 2007, 3183.  DOI:10.1039/b703295a

現在もっとも知名度の高い医薬品であろうタミフル。副作用疑惑で何かと世間を騒がせていますが、大変良く効く抗インフルエンザ薬であることは疑いありません。世論に流され安直に使用停止、という結末にならないよう、きちっとした科学的データを示し、適正使用に向けての取り組みを着実に進めていって欲しいものです。

さて最近、タミフルの新たな合成法がスウェーデンのNina Kann准教授らによって、Chemical Communication誌に報告されました。鍵工程として鉄カルボニルの化学を利用していることが特徴です。

タミフルの合成で難しい点は、シクロヘキセン環上に連続する不斉中心をいかに立体選択的に構築するか、ということです。これまでに、米ハーバード大のコーリー教授、東大薬学部の柴崎正勝教授によってタミフルの不斉合成が報告されています。いずれの例も独自に開発した不斉触媒を用いて、足がかりとなる不斉中心を上手く構築しています (詳細はこちらの記事をご参照ください)。

今回報告されたルートでは、面不斉をもつキラル鉄カルボニル-ジエン錯体を巧みに用いた、立体選択的な官能基導入が実現されています。この鉄錯体は以下の通り、キラル補助基の付加後、HPLCで分離し、補助基を酸条件で除去して調製しています。0価の鉄原子は電子豊富であり、隣接位のカルボカチオンを安定化できる、ということが変換のポイントになります。

CStamiflu

 

このカチオン性錯体は、求核剤(BocNH2)存在下に付加を受けます。鉄カルボニル部位の反発を避ける方向から反応が起きます。引き続き、鉄カルボニルを酸化的に除去して、カルバメート基のDirecting Effectを利用して、mCPBAエポキシ化を立体選択的に進行させています。

CStamiflu2

 

タミフルのような、シクロヘキセン骨格を持つ化合物を綺麗に作ろうとすると、大抵の合成化学者はDiels-Alder反応を使いたがるのではと思います。選択性の予測が可能で、かつ信頼性が大変高いためです。一方で今回のルートは、 炭素骨格が最初からそろっている基質に官能基を生やしていくルートであり、独創的なアプローチのルートだと思えます。

ただ勿論完璧なルートというわけではありません。いくつか簡単に思い付くデメリットとしては、①有毒で酸素に不安定なカルボニル錯体を当量用いなければならない、②高価なキラル補助基を用いた光学分割が必要で、基質の半分が不要になってしまう などでしょうか。

「有毒な試薬をたくさん使って医薬品を作ることに何の意味があるのか?とても実用に堪えないじゃないか?」という批判は、こういった類の仕事につきものです。とはいえ、それはもっとも簡単なレベルの批判だと思えますが。

そういったルートでも、将来的に問題点を解決するブレイクスルーが達成されれば、一挙に実用候補にあがるルートになるかもしれません。また、別ルートの合成研究からは、今まで気づかなかったハードルが浮き彫りになることも多く、既存法に対する問題提起を行うことにもつながります。 勿論、より良い合成ルート確立に向けてのたたき台としても使えます。確立されたルートが沢山あるほど、効率よく作るためのヒントが増え、良いものが開発しやすくなるわけですから。

もちろん、ロシュ社のプロセスルートは相当に完成度が高く、いくら新たな高効率ルートが開発されたとしても、それと直接とって代わることは当面なさそうです。アカデミックルートへの切り替えはロシュにとって旨味がない、という認識はおそらく正しいでしょう。 とはいえ将来物質特許が切れたとき、つまり他の製薬会社がジェネリックとして売り出すときに、ルートの一部や改良ルートが使われるのではないか――こういった話であれば、現実的可能性はありそうです(勿論全くそのまま、と言うわけにはいかないでしょうが)。

いずれにせよ学術領域では、「制約の多い企業研究者が考えつかないような視点・発想での合成ルートを考案・提案・実現する」ことこそが重要なのだと思います。

関連リンク

Fresh approach to Tamiflu Production(Chemistry World)

オセルタミビル(Wikipedia)

Oseltamivir(Wikipedia)

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 金と炭素がつくりだす新たな動的共有結合性を利用した新たな炭素ナノ…
  2. GRE Chemistry 受験報告 –試験対策編–
  3. マイクロ波合成装置の最先端!
  4. シビれる(T T)アジリジン合成
  5. 第95回日本化学会付設展示会ケムステキャンペーン!Part I
  6. 第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤…
  7. 学部生にオススメ:「CSJ カレントレビュー」で最新研究をチェッ…
  8. Reaxys Ph.D Prize2019ファイナリスト発表!

注目情報

ピックアップ記事

  1. 三原色発光するシリコン量子ドットフィルム―太陽光、高温、高湿への高い耐久性は表面構造が鍵―
  2. 「非晶質ニッケルナノ粒子」のユニークな触媒特性
  3. ゾイジーンが設計した化合物をベースに新薬開発へ
  4. アンモニアを用いた環境調和型2級アミド合成
  5. フェリックス・カステラーノ Felix N. Castellano
  6. Happy Mole Day to You !!
  7. 化学の力で複雑なタンパク質メチル化反応を制御する
  8. 液体ガラスのフシギ
  9. Macユーザーに朗報!ChemDrawとWordが相互貼付可能に!
  10. ジェフ・ボーディ Jeffrey W. Bode

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー