[スポンサーリンク]

化学者のつぶやき

タミフルの新規合成法

An iron carbonyl approach to the influenza neuraminidase inhibitor oseltamivir.
Bromfield, K. M.; Graden, H.; Hagberg, D. P.; Olsson, T.; Kann, N. Chem. Commun. 2007, 3183.  DOI:10.1039/b703295a

現在もっとも知名度の高い医薬品であろうタミフル。副作用疑惑で何かと世間を騒がせていますが、大変良く効く抗インフルエンザ薬であることは疑いありません。世論に流され安直に使用停止、という結末にならないよう、きちっとした科学的データを示し、適正使用に向けての取り組みを着実に進めていって欲しいものです。

さて最近、タミフルの新たな合成法がスウェーデンのNina Kann准教授らによって、Chemical Communication誌に報告されました。鍵工程として鉄カルボニルの化学を利用していることが特徴です。

タミフルの合成で難しい点は、シクロヘキセン環上に連続する不斉中心をいかに立体選択的に構築するか、ということです。これまでに、米ハーバード大のコーリー教授、東大薬学部の柴崎正勝教授によってタミフルの不斉合成が報告されています。いずれの例も独自に開発した不斉触媒を用いて、足がかりとなる不斉中心を上手く構築しています (詳細はこちらの記事をご参照ください)。

今回報告されたルートでは、面不斉をもつキラル鉄カルボニル-ジエン錯体を巧みに用いた、立体選択的な官能基導入が実現されています。この鉄錯体は以下の通り、キラル補助基の付加後、HPLCで分離し、補助基を酸条件で除去して調製しています。0価の鉄原子は電子豊富であり、隣接位のカルボカチオンを安定化できる、ということが変換のポイントになります。

CStamiflu

 

このカチオン性錯体は、求核剤(BocNH2)存在下に付加を受けます。鉄カルボニル部位の反発を避ける方向から反応が起きます。引き続き、鉄カルボニルを酸化的に除去して、カルバメート基のDirecting Effectを利用して、mCPBAエポキシ化を立体選択的に進行させています。

CStamiflu2

 

タミフルのような、シクロヘキセン骨格を持つ化合物を綺麗に作ろうとすると、大抵の合成化学者はDiels-Alder反応を使いたがるのではと思います。選択性の予測が可能で、かつ信頼性が大変高いためです。一方で今回のルートは、 炭素骨格が最初からそろっている基質に官能基を生やしていくルートであり、独創的なアプローチのルートだと思えます。

ただ勿論完璧なルートというわけではありません。いくつか簡単に思い付くデメリットとしては、①有毒で酸素に不安定なカルボニル錯体を当量用いなければならない、②高価なキラル補助基を用いた光学分割が必要で、基質の半分が不要になってしまう などでしょうか。

「有毒な試薬をたくさん使って医薬品を作ることに何の意味があるのか?とても実用に堪えないじゃないか?」という批判は、こういった類の仕事につきものです。とはいえ、それはもっとも簡単なレベルの批判だと思えますが。

そういったルートでも、将来的に問題点を解決するブレイクスルーが達成されれば、一挙に実用候補にあがるルートになるかもしれません。また、別ルートの合成研究からは、今まで気づかなかったハードルが浮き彫りになることも多く、既存法に対する問題提起を行うことにもつながります。 勿論、より良い合成ルート確立に向けてのたたき台としても使えます。確立されたルートが沢山あるほど、効率よく作るためのヒントが増え、良いものが開発しやすくなるわけですから。

もちろん、ロシュ社のプロセスルートは相当に完成度が高く、いくら新たな高効率ルートが開発されたとしても、それと直接とって代わることは当面なさそうです。アカデミックルートへの切り替えはロシュにとって旨味がない、という認識はおそらく正しいでしょう。 とはいえ将来物質特許が切れたとき、つまり他の製薬会社がジェネリックとして売り出すときに、ルートの一部や改良ルートが使われるのではないか――こういった話であれば、現実的可能性はありそうです(勿論全くそのまま、と言うわけにはいかないでしょうが)。

いずれにせよ学術領域では、「制約の多い企業研究者が考えつかないような視点・発想での合成ルートを考案・提案・実現する」ことこそが重要なのだと思います。

関連リンク

Fresh approach to Tamiflu Production(Chemistry World)

オセルタミビル(Wikipedia)

Oseltamivir(Wikipedia)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 美麗な分子モデルを描きたい!!
  2. DNAを切らずにゲノム編集-一塩基変換法の開発
  3. STAP細胞問題から見えた市民と科学者の乖離ー前編
  4. 年に一度の「事故」のおさらい
  5. マタタビの有効成分のはなし
  6. 祝100周年!ー同位体ー
  7. MEXT-JST 元素戦略合同シンポジウム ~元素戦略研究の歩み…
  8. タクミナ「スムーズフローポンプQ」の無料モニターキャンペーン

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第15回 触媒の力で斬新な炭素骨格構築 中尾 佳亮講師
  2. ≪Excel演習で学ぶ≫化学プロセスにおける研究開発時のコスト試算と事業採算性検討
  3. 学会風景2001
  4. ボイランド・シムズ酸化 Boyland-Sims Oxidation
  5. ティム・スワガー Timothy M. Swager
  6. Junfeng Zhao
  7. 信越化学1四半期決算…自動車や電気向け好調で増収増益
  8. 酸素 Oxygen -空気や水を構成する身近な元素
  9. 第五回 化学の力で生物システムを制御ー浜地格教授
  10. Glenn Gould と錠剤群

関連商品

注目情報

注目情報

最新記事

ジアゾニウム塩が開始剤と捕捉剤を“兼務”する

アリールジアゾニウム塩を用いたプレニルカルバマート/ウレアのシクロアミノジアゾ化反応が開発された。入…

パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への展開

2016年、イリノイ大学シカゴ校・Vladimir Gevorgyanらは、Pd(0)触媒の共存下、…

ウラジミール・ゲヴォルギャン Vladimir Gevorgyan

ウラジミール・ゲヴォルギャン(Vladimir Gevorgyan、1956年8月12日-)は、アメ…

有機合成化学協会誌2018年11月号:オープンアクセス・英文号!

有機合成化学協会が発行する有機合成化学協会誌、2018年11月号がオンライン公開されました。今月…

観客が分泌する化学物質を測定することで映画のレーティングが可能になるかもしれない

映画には、年齢による鑑賞制限が設けられているものがあります。その制限は映画の内容に応じて各国の審査団…

庄野酸化 Shono Oxidation

概要アルコール溶媒中にアミドまたはカルバメートを電解酸化し、N,O-アセタールを得る反応。アミン…

PAGE TOP