[スポンサーリンク]

一般的な話題

今年はキログラムに注目だ!

[スポンサーリンク]

遅ればせながら明けましておめでとうございます。本年も面白い化学について少しでもお伝えできればと思いますので、よろしくお願い申し上げます。

という訳で、昨年末あたりは2018年が化学に関するなんらかのアニバーサリーイヤーになっていないかをボチボチと調べていました。が、残念ながらなかなかいいのが見当たらず、イカになってインクをそこら中にばらまくことに惚けてしまいました。

過去には適当なネタがないということで、今年予定されている化学に関する重大なイベントについて、先走って紹介してしまいたいと思います。

キログラムと言っても、年末年始の暴飲暴食でお腹周りのキログラムが増えた程度の関わりかと思います。

さて、アボガドロ定数はどうやって決まっているんでしたっけ?0.012 kgの12Cに含まれている原子の数でした。ここで重要になってくるのは、0.012 kgという質量を、どのように正確に決めるのかになります。物事を定義するには、その基準となるものが必ず必要となりますが、質量という「物理量」は、基準となる「分銅」を基にした定義を用いていました。

その分銅は国際キログラム原器(IPK)と呼ばれ、直径および高さが約39 mmの円柱形の白金90%、イリジウム10%の合金製で、フランスのセーヴルの国際度量衡局(BIPM)に、二重の気密容器を用いて真空中で保管されています。現在ではIPKの複製がいくつも作成されており、我が国には現時点で4つの原器があり、そのいずれもが産業総合研究所(以下産総研)に保管されています。

日本国キログラム原器(画像は産総研HPより)

40年を目処に、各国のキログラム原器は国際キログラム原器と比較することになっており、日本国キログラム原器は、国際キログラム原器より0.176 mg程重いことが分かっています。いくら真空で保管しているとはいえ、物質ですので、何らかの影響を受けて質量が増減することは容易に想像できます。事実、ほぼ全てのキログラム原器は1889年と比較すると相対的に重くなっているようです。数年前に国際キログラム原器の洗浄が行われ、洗浄前に比べて50 ug程度軽くなったと言われていますが、「原器」なので、それがまた基準となります。

さて、このように現在でも質量という、最も馴染みのある物理量だけが普遍的ではありません。しかし、今年から来年にかけてこれが普遍的なものに変わろうとしています。そのためにはプランク定数(h)を正確に定義すればよいのです。難しいところは省きますが、相対論と光電効果の式より、

E = mc2 = hνであり、これを変形すると

ν = mc2/h となります。ここで、mは物体の静止質量、cは光速度(定数)、νは光子の周波数であり、mを1 kgとして、「プランク定数を定義」すれば、キログラムとは、周波数が[(299792458)2/6.626XXX]×1034 Hzの光子のエネルギーに等価な質量と定義することが可能になります(ここでXXXの部分はまだ正確に決まっていない部分)。

では、このプランク定数を正確に決めるにはどうすればいいのでしょうか?いくつか方法が考案されていますが、その中にアボガドロ定数(NA)を用いる方法があります。プランク定数とアボガドロ定数は

NAh = cAr(e)Mua2/2R (Ar(e): 電子の相対原子質量, Mu: モル質量定数, a: 微細構造定数, R: リュードベリ定数)

という式で結び付けられていますので、そのどちらかが求められれば、もう一方も決まることになるのです。

なんだか循環論法みたいですが、まとめると、アボガドロ定数を正確に求めるプランク定数が決まるキログラムが決まるという流れです。

アボガドロ定数を正確に求める試みは、世界中で活発に行われてきましたが、アボガドロ国際プロジェクトに参画している産総研より、昨年素晴らしい成果が報告されました[1]。彼らはまず99.99%まで同位体の純度を高めた28Siの単結晶を5 kg作成し、そこから1 kgの真球を削り出しました。そしてX線干渉計を用いて結晶の格子定数を決定し、さらにレーザー干渉計を用いて体積を精密に測定することで、アボガドロ定数を

6.02214084(15)×1023

と高精度で求めています(括弧内の数字は最後の桁の標準不確かさを表す)。

産総研が開発したX線光電子分光法システム(左)、分光エリプソメーター(右)(画像は産総研HPより)

球体のシリコンが美しく光ってますね

この値は、その他のグループの測定結果(他の測定方法を含む)ともよく一致しています。なお最近になって、過去の測定値を基にさらに

6.022140588(65)×1023

と高精度で求めています[2]。これらの結果を含む8つの測定値に基づいて、科学技術データ委員会(CODATA)はプランク定数の調整値として

6.626070150(69)×10-34 (Js)

を決定しています。その精度は1.0×10-8にもなります。これは1 kgに換算すると10 ugということになるので、現行のキログラム原器の安定性が50 ugほどであることを考えると大きな進歩であると言えます。

そして今年11月に開催予定の第26回国際度量衡総会(CGPM)において、このプランク定数の不確かさをゼロとし、プランク定数をその名の通り定義値とするかどうかが審議される予定です。ここでプランク定数が決定することで、キログラムという単位が普遍的な物理量となるのです。

さて、今年は化学において、いや科学全般に大きく波及するであろうキログラムの定義の変更という歴史的な年になるかもですね。ちなみに定義の施行は来年の5月20日、世界計量記念日になるかもです。

国際単位系(SI)の基本となる単位の決定に我が国が直接関与するのは初めてとのことですので、それはそれで嬉しい気がします。これからはキログラム推しでいきたいと思います(?)。

参考文献

  1. Kuramoto, N.; Mizushima, S.; Zhang, L.; Fujita, K.; Azuma, Y.; Kurokawa, A.; Okubo, S.; Inaba, H.; Fujii, K. Metrologia 54, 716 (2017). DOI: 10.1088/1681-7575/aa77d1

  2. Fujii, K.; Massa, E.; Bettin, H.; Kuramoto, N.; Mana, G. Metrologia 55, L1 (2018). DOI: 10.1088/1681-7575/aa77d1

参考サイト

関連書籍

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. 続・名刺を作ろう―ブロガー向け格安サービス活用のススメ
  2. 【大阪開催2月26日】 「化学系学生のための企業研究セミナー」
  3. 『ほるもん-植物ホルモン擬人化まとめ-』管理人にインタビュー!
  4. 最近の金事情
  5. 研究室クラウド設立のススメ(経緯編)
  6. Kindle Paperwhiteで自炊教科書を読んでみた
  7. 不斉Corey-Chaykovskyエポキシド合成を鍵としたキニ…
  8. コロナワクチン接種の体験談【化学者のつぶやき】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 電子デバイス製造技術 ーChemical Times特集より
  2. リン Phosphorusー体の中の重要分子DNAの構成成分。肥料にも多用される
  3. スキンケア・化粧品に含まれる有害物質を巡る騒動
  4. 第37回反応と合成の進歩シンポジウムに参加してきました。
  5. 痔治療の新薬で大臣賞 経産省が起業家表彰
  6. フライデーハーバー研究所
  7. Reaxysレクチャー&第9回平田メモリアルレクチャー
  8. 資生堂企業資料館
  9. 青いセレンディピティー
  10. 世界初 ソフトワーム用自発光液 「ケミホタルペイント」が発売

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

注目情報

最新記事

第27回ケムステVシンポ『有機光反応の化学』を開催します!

7月に入り、いよいよ日差しが強まって夏本格化という時期になりました。光のエネルギーを肌で感じられます…

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP