[スポンサーリンク]

化学者のつぶやき

ジアニオンで芳香族化!?ラジアレンの大改革(開殻)

[スポンサーリンク]

芳香族性をもたないπ拡張ラジアレン類が二電子還元により、芳香族性を発現することが実証された。π拡張ラジアレン骨格の末端にフルオレン構造をもつ分子設計が芳香族性の還元体生成の鍵である。また還元体は環構造に依存して、閉殻および開殻構造をとる。

[n]ラジアレン類と芳香族性

[n]ラジアレンは、シクロアルカンの全ての炭素にメチレンが置換した構造をもつ共役炭化水素である (nはシクロアルカンの炭素数を表す、図1A)[1]。また、[n]ラジアレンの各頂点の間にアセチレンが挿入された化合物群はπ拡張[n]ラジアレンと呼ばれる。これらラジアレン類は芳香族性を示さないが、二電子還元された還元体は続く電荷分離により芳香族性を獲得できることが理論的に予測されている[2]。[n]ラジアレンの還元体は、1988年に伊予田らが末端にフルオレン骨格をもつ[3]ラジアレン1とその還元体12–の合成を報告しており、この還元体12–が芳香族性を示すことがChauvinらの計算により確かめられている(図1B)[3, 4]。一方で、π拡張[n]ラジアレンの還元体は未だ合成例ないため、還元されたπ拡張[n]ラジアレンが芳香族性をもつか実際に確かめられてはいない。

このようは背景のもと、今回著者らは末端にフルオレン骨格をもつπ拡張[n]ラジアレンER-nおよびそのジアニオン種ER-n2–を合成し、その芳香族性を調査した。中性分子ER-nの中心環は4電子系であり芳香族性を示さず、ジアニオン種ER-n2–は中心環とフルオレン部位での電荷分離により(4N+2)π電子系となり、芳香族性を示すと予想される。一連のπ拡張[n]ラジアレンの芳香族性は、各種測定および理論計算により検証された他、ジアニオン種ER-n2–の電子構造も調査している (図1C)。

図1. (A) [n]ラジアレン (B) 還元による芳香族性の発現 (C) π拡張[n]ラジアレン (D) π拡張[n]ラジアレンの還元による芳香族性の発現

“Enhanced Aromaticity and Open-Shell Diradical Character in the Dianions of 9-FluorenylideneSubstituted Expanded Radialenes”
Xin, S.; Han, Y.; Fan, W.; Wang, X.; Ni, Y.; Wu, J. Angew. Chem., Int. Ed. 2022, e202209448
DOI: 10.1002/anie.202209448

 

論文著者の紹介

研究者:Jishan Wu (吴 继善)
研究者の経歴:1993–1997 B.Sc., Wuhan University, China

1997–2000 M.Sc., Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China (Prof. X. Wang and Prof. F. Wang)
2000–2004 Ph.D., Max-Planck Institute for Polymer Research, Germany (Prof. K Müllen)
2004–2005 Project leader, Max-Planck Institute for Polymer Research, Germany
2005–2007 Postdoc, University of California at Los Angeles, USA (Prof. Sir F. Stoddart)
2007–2011 Assistant Professor, National University of Singapore, Singapore
2012–2017 Associate Professor, National University of Singapore, Singapore
2017– Professor, National University of Singapore, Singapore

研究内容:特異な芳香族構造の開発、印刷可能な電気素子デバイス開発、近赤外線吸収色素の開発

論文の概要

著者らはまず、市販の化合物から5段階でジアセチレン3を合成した (図2A)。続いて、Cu(OAc)2を用いるグレーサー–エグリントンカップリングによりπ拡張[n]ラジアレンER-3(収率27%)、ER-4(収率14%)、ER-5(収率7%)の合成を達成した。得られたER-n(n = 3 and 4)の分子構造はX線解析で明らかにされている[5]ER-4の中心環部分の炭素–炭素結合長に結合長交替が見られたため、ER-4は芳香族性を示さない (図2B)[5, 6]

続いて、合成したER-nの還元体(ER-n2–)の調製および芳香族性の調査に着手した (図2C)。ER-4に2.2当量のナトリウムアントラセニドを作用させ、二電子還元されたER-42–を調製した。還元により、1H NMRにおけるプロトンaが低磁場側に大きくシフトした (図2D)。これは隣接する中心環からの非遮蔽効果と考えられる。また、NICS計算[7]では、還元により中心環内部に遮蔽領域が形成された。これらの結果は、ER-42–の中心環に芳香族性が発現したことを示唆している。ER-42–の中心環に芳香族性が発現したのは、ER-4の還元後、中心環とフルオレン部位での電荷分離により18π電子系となったためと考えられる。さらに、ACIDおよびICSSによる計算結果も還元に伴うER-42–の芳香族性の発現を支持している。詳細は論文を参照されたい。

加えて、ER-42–は室温での1H NMRでブロードしたピークを与えたため、ESR測定にて電子構造を解析した (図2E)。ER-42–のESR測定では幅広のシグナルが観測され、降温に伴いシグナル強度が減少したため、ER-42–はジラジカル種であると明らかとなった。ER-42–は二つのラジカル中心の間に交差共役構造をもつため、中心環は開殻ジラジカル特性と芳香族性が共存する特異な性質を示すと考えられる。これはER-52–も同様である。一方で、ER-32–は二つのラジカル中心の間に交差共役構造をもたないため、開殻ジラジカル特性をもたない(閉殻クムレン構造)。したがって、ER-n2–は環構造に依存して、閉殻もしくは開殻構造をもつことが明らかにされた。

図2. (A) ER-nの合成 (B) ER-4の分子構造 (C) ER-n2–の調製 (D) ER-4の還元による芳香族性の発現 (E) ER-42–の開殻ジラジカル特性 (論文より引用、一部改変)

 

以上、末端にフルオレン骨格をもつπ拡張[n]ラジアレンER-nとその還元体ER-n2–の合成に成功した。本研究でも、末端のフルオレン構造がジアニオン種ER-n2–の安定化に寄与している。各種測定により、ER-nが二電子還元によりHückel則に基づく芳香族性を発現することが実証された。加えて、ER-n2–は環構造に依存して、閉殻もしくは開殻構造をもつことが明らかになった。

参考文献

  1. Gholami, M.; Tykwinski, R. R. Oligomeric and Polymeric Systems with a Cross-Conjugated π-Framework. Chem. Rev. 2006, 106, 4997–5027. DOI: 10.1021/cr0505573.
  2. Lepetit,; Nielsen,M. B.; Diederich, F.; Chauvin, R. Aromaticity and Electron Affinity of Carbok–[3]radialenes, k = 0, 1, 2. Chem. Eur. J. 2003, 9, 5056–5066. DOI: 10.1002/chem.200305070.
  3. Iyoda, M.; Otani, H.; Oda, M. Tris(fluoren-9-ylidene)cyclopropane, a Novel [3]Radialene. Angew. Chem., Int. Ed. 1988, 27, 1080–1081. DOI: 10.1002/anie.198810801.
  4. Boldi, A. M.; Diederich, F. Expanded Radialenes: A Novel Class of Cross-Conjugated Macrocycles. Angew. Chem., Int. Ed. 1994, 33, 468–471. DOI: 10.1002/anie.199404681.
  5. ER-4のX線構造解析は結晶の質が悪いため正確ではないが、ER-4で揃えるためにここでは採用している。
  6. 芳香族性を示す場合、π電子の非局在化によって、結合長交替は限りなく小さくなる。
  7. NICS計算では、全てのMes基をプロトンに置き換えたモデル化合物で計算している。

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 今年は国際周期表年!
  2. DNAが絡まないためのループ
  3. ケトンを配向基として用いるsp3 C-Hフッ素化反応
  4. 【技術系スタートアップ合同フォーラムのお知らせ】 ディープテック…
  5. 【書籍】「喜嶋先生の静かな世界」
  6. 【Q&Aシリーズ❷ 技術者・事業担当者向け】 マイクロ…
  7. 組曲『ノーベル化学賞』
  8. あなたの天秤、正確ですか?

注目情報

ピックアップ記事

  1. α,β-不飽和イミンのγ-炭素原子の不斉マイケル付加反応
  2. ノーベル化学賞まとめ
  3. すぐできる 量子化学計算ビギナーズマニュアル
  4. 8億4400万円で和解 青色LED発明対価訴訟
  5. 研究テーマ変更奮闘記 – PhD留学(後編)
  6. エイダ・ヨナス Ada E. Yonath
  7. リチウムイオン電池製造の勘どころ【終了】
  8. 振動円二色性スペクトル Vibrational Circular Dichroism (VCD) Spectrum
  9. 乳がんを化学的に予防 名大大幸医療センター
  10. プラトー反応 Prato Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

マーク・レビン Mark D. Levin

マーク D. レビン (Mark D. Levin、–年10月14日)は米国の有機化学者である。米国…

もう一歩先へ進みたい人の化学でつかえる線形代数

概要化学分野の諸問題に潜む線形代数の要素を,化学専攻の目線から解体・解説する。(引用:コロナ…

ノーベル賞受賞者と語り合う5日間!「第17回HOPEミーティング」参加者募集!

今年もHOPEミーティングの参加者募集の時期がやって来ました。HOPEミーティングは、博士課…

熱前駆体法を利用した水素結合性有機薄膜の作製とトランジスタへの応用

第664回のスポットライトリサーチは、京都大学大学院理学研究科(化学研究所・山田研究室)博士後期課程…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP