[スポンサーリンク]

化学者のつぶやき

ジアニオンで芳香族化!?ラジアレンの大改革(開殻)

[スポンサーリンク]

芳香族性をもたないπ拡張ラジアレン類が二電子還元により、芳香族性を発現することが実証された。π拡張ラジアレン骨格の末端にフルオレン構造をもつ分子設計が芳香族性の還元体生成の鍵である。また還元体は環構造に依存して、閉殻および開殻構造をとる。

[n]ラジアレン類と芳香族性

[n]ラジアレンは、シクロアルカンの全ての炭素にメチレンが置換した構造をもつ共役炭化水素である (nはシクロアルカンの炭素数を表す、図1A)[1]。また、[n]ラジアレンの各頂点の間にアセチレンが挿入された化合物群はπ拡張[n]ラジアレンと呼ばれる。これらラジアレン類は芳香族性を示さないが、二電子還元された還元体は続く電荷分離により芳香族性を獲得できることが理論的に予測されている[2]。[n]ラジアレンの還元体は、1988年に伊予田らが末端にフルオレン骨格をもつ[3]ラジアレン1とその還元体12–の合成を報告しており、この還元体12–が芳香族性を示すことがChauvinらの計算により確かめられている(図1B)[3, 4]。一方で、π拡張[n]ラジアレンの還元体は未だ合成例ないため、還元されたπ拡張[n]ラジアレンが芳香族性をもつか実際に確かめられてはいない。

このようは背景のもと、今回著者らは末端にフルオレン骨格をもつπ拡張[n]ラジアレンER-nおよびそのジアニオン種ER-n2–を合成し、その芳香族性を調査した。中性分子ER-nの中心環は4電子系であり芳香族性を示さず、ジアニオン種ER-n2–は中心環とフルオレン部位での電荷分離により(4N+2)π電子系となり、芳香族性を示すと予想される。一連のπ拡張[n]ラジアレンの芳香族性は、各種測定および理論計算により検証された他、ジアニオン種ER-n2–の電子構造も調査している (図1C)。

図1. (A) [n]ラジアレン (B) 還元による芳香族性の発現 (C) π拡張[n]ラジアレン (D) π拡張[n]ラジアレンの還元による芳香族性の発現

“Enhanced Aromaticity and Open-Shell Diradical Character in the Dianions of 9-FluorenylideneSubstituted Expanded Radialenes”
Xin, S.; Han, Y.; Fan, W.; Wang, X.; Ni, Y.; Wu, J. Angew. Chem., Int. Ed. 2022, e202209448
DOI: 10.1002/anie.202209448

 

論文著者の紹介

研究者:Jishan Wu (吴 继善)
研究者の経歴:1993–1997 B.Sc., Wuhan University, China

1997–2000 M.Sc., Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China (Prof. X. Wang and Prof. F. Wang)
2000–2004 Ph.D., Max-Planck Institute for Polymer Research, Germany (Prof. K Müllen)
2004–2005 Project leader, Max-Planck Institute for Polymer Research, Germany
2005–2007 Postdoc, University of California at Los Angeles, USA (Prof. Sir F. Stoddart)
2007–2011 Assistant Professor, National University of Singapore, Singapore
2012–2017 Associate Professor, National University of Singapore, Singapore
2017– Professor, National University of Singapore, Singapore

研究内容:特異な芳香族構造の開発、印刷可能な電気素子デバイス開発、近赤外線吸収色素の開発

論文の概要

著者らはまず、市販の化合物から5段階でジアセチレン3を合成した (図2A)。続いて、Cu(OAc)2を用いるグレーサー–エグリントンカップリングによりπ拡張[n]ラジアレンER-3(収率27%)、ER-4(収率14%)、ER-5(収率7%)の合成を達成した。得られたER-n(n = 3 and 4)の分子構造はX線解析で明らかにされている[5]ER-4の中心環部分の炭素–炭素結合長に結合長交替が見られたため、ER-4は芳香族性を示さない (図2B)[5, 6]

続いて、合成したER-nの還元体(ER-n2–)の調製および芳香族性の調査に着手した (図2C)。ER-4に2.2当量のナトリウムアントラセニドを作用させ、二電子還元されたER-42–を調製した。還元により、1H NMRにおけるプロトンaが低磁場側に大きくシフトした (図2D)。これは隣接する中心環からの非遮蔽効果と考えられる。また、NICS計算[7]では、還元により中心環内部に遮蔽領域が形成された。これらの結果は、ER-42–の中心環に芳香族性が発現したことを示唆している。ER-42–の中心環に芳香族性が発現したのは、ER-4の還元後、中心環とフルオレン部位での電荷分離により18π電子系となったためと考えられる。さらに、ACIDおよびICSSによる計算結果も還元に伴うER-42–の芳香族性の発現を支持している。詳細は論文を参照されたい。

加えて、ER-42–は室温での1H NMRでブロードしたピークを与えたため、ESR測定にて電子構造を解析した (図2E)。ER-42–のESR測定では幅広のシグナルが観測され、降温に伴いシグナル強度が減少したため、ER-42–はジラジカル種であると明らかとなった。ER-42–は二つのラジカル中心の間に交差共役構造をもつため、中心環は開殻ジラジカル特性と芳香族性が共存する特異な性質を示すと考えられる。これはER-52–も同様である。一方で、ER-32–は二つのラジカル中心の間に交差共役構造をもたないため、開殻ジラジカル特性をもたない(閉殻クムレン構造)。したがって、ER-n2–は環構造に依存して、閉殻もしくは開殻構造をもつことが明らかにされた。

図2. (A) ER-nの合成 (B) ER-4の分子構造 (C) ER-n2–の調製 (D) ER-4の還元による芳香族性の発現 (E) ER-42–の開殻ジラジカル特性 (論文より引用、一部改変)

 

以上、末端にフルオレン骨格をもつπ拡張[n]ラジアレンER-nとその還元体ER-n2–の合成に成功した。本研究でも、末端のフルオレン構造がジアニオン種ER-n2–の安定化に寄与している。各種測定により、ER-nが二電子還元によりHückel則に基づく芳香族性を発現することが実証された。加えて、ER-n2–は環構造に依存して、閉殻もしくは開殻構造をもつことが明らかになった。

参考文献

  1. Gholami, M.; Tykwinski, R. R. Oligomeric and Polymeric Systems with a Cross-Conjugated π-Framework. Chem. Rev. 2006, 106, 4997–5027. DOI: 10.1021/cr0505573.
  2. Lepetit,; Nielsen,M. B.; Diederich, F.; Chauvin, R. Aromaticity and Electron Affinity of Carbok–[3]radialenes, k = 0, 1, 2. Chem. Eur. J. 2003, 9, 5056–5066. DOI: 10.1002/chem.200305070.
  3. Iyoda, M.; Otani, H.; Oda, M. Tris(fluoren-9-ylidene)cyclopropane, a Novel [3]Radialene. Angew. Chem., Int. Ed. 1988, 27, 1080–1081. DOI: 10.1002/anie.198810801.
  4. Boldi, A. M.; Diederich, F. Expanded Radialenes: A Novel Class of Cross-Conjugated Macrocycles. Angew. Chem., Int. Ed. 1994, 33, 468–471. DOI: 10.1002/anie.199404681.
  5. ER-4のX線構造解析は結晶の質が悪いため正確ではないが、ER-4で揃えるためにここでは採用している。
  6. 芳香族性を示す場合、π電子の非局在化によって、結合長交替は限りなく小さくなる。
  7. NICS計算では、全てのMes基をプロトンに置き換えたモデル化合物で計算している。

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Scifinderが実験項情報閲覧可能に!
  2. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  3. アジドインドリンを利用した深海細菌産生インドールアルカロイド骨格…
  4. ウクライナ危機と創薬ビルディングブロック –エナミン社のケースよ…
  5. 革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体…
  6. グローブボックスあるある
  7. 分子研「第139回分子科学フォーラム」に参加してみた
  8. 「もはや有機ではない有機材料化学:フルオロカーボンに可溶な材料の…

注目情報

ピックアップ記事

  1. 広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始
  2. 有機合成化学協会誌2018年10月号:生物発光・メタル化アミノ酸・メカノフルオロクロミズム・ジベンゾバレレン・シクロファン・クロミック分子・高複屈折性液晶・有機トランジスタ
  3. 表裏二面性をもつ「ヤヌス型分子」の合成
  4. 尿はハチ刺されに効くか 学研シリーズの回顧
  5. ラマン分光の基礎知識
  6. Reaxys Prize 2013ファイナリスト45名発表!
  7. 「新反応開発:結合活性化から原子挿入まで」を聴講してみた
  8. エステルを使った新しいカップリング反応
  9. エステルからエーテルをつくる脱一酸化炭素金属触媒
  10. ヘロナミドA Heronamide A

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と…

【12月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスのエステル化、エステル交換触媒としての利用

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

分極したBe–Be結合で広がるベリリウムの化学

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初め…

小松 徹 Tohru Komatsu

小松 徹(こまつ とおる、19xx年xx月xx日-)は、日本の化学者である。東京大学大学院薬学系研究…

化学CMアップデート

いろいろ忙しくてケムステからほぼ一年離れておりましたが、少しだけ復活しました。その復活第一弾は化学企…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP