[スポンサーリンク]

化学者のつぶやき

ジアニオンで芳香族化!?ラジアレンの大改革(開殻)

[スポンサーリンク]

芳香族性をもたないπ拡張ラジアレン類が二電子還元により、芳香族性を発現することが実証された。π拡張ラジアレン骨格の末端にフルオレン構造をもつ分子設計が芳香族性の還元体生成の鍵である。また還元体は環構造に依存して、閉殻および開殻構造をとる。

[n]ラジアレン類と芳香族性

[n]ラジアレンは、シクロアルカンの全ての炭素にメチレンが置換した構造をもつ共役炭化水素である (nはシクロアルカンの炭素数を表す、図1A)[1]。また、[n]ラジアレンの各頂点の間にアセチレンが挿入された化合物群はπ拡張[n]ラジアレンと呼ばれる。これらラジアレン類は芳香族性を示さないが、二電子還元された還元体は続く電荷分離により芳香族性を獲得できることが理論的に予測されている[2]。[n]ラジアレンの還元体は、1988年に伊予田らが末端にフルオレン骨格をもつ[3]ラジアレン1とその還元体12–の合成を報告しており、この還元体12–が芳香族性を示すことがChauvinらの計算により確かめられている(図1B)[3, 4]。一方で、π拡張[n]ラジアレンの還元体は未だ合成例ないため、還元されたπ拡張[n]ラジアレンが芳香族性をもつか実際に確かめられてはいない。

このようは背景のもと、今回著者らは末端にフルオレン骨格をもつπ拡張[n]ラジアレンER-nおよびそのジアニオン種ER-n2–を合成し、その芳香族性を調査した。中性分子ER-nの中心環は4電子系であり芳香族性を示さず、ジアニオン種ER-n2–は中心環とフルオレン部位での電荷分離により(4N+2)π電子系となり、芳香族性を示すと予想される。一連のπ拡張[n]ラジアレンの芳香族性は、各種測定および理論計算により検証された他、ジアニオン種ER-n2–の電子構造も調査している (図1C)。

図1. (A) [n]ラジアレン (B) 還元による芳香族性の発現 (C) π拡張[n]ラジアレン (D) π拡張[n]ラジアレンの還元による芳香族性の発現

“Enhanced Aromaticity and Open-Shell Diradical Character in the Dianions of 9-FluorenylideneSubstituted Expanded Radialenes”
Xin, S.; Han, Y.; Fan, W.; Wang, X.; Ni, Y.; Wu, J. Angew. Chem., Int. Ed. 2022, e202209448
DOI: 10.1002/anie.202209448

 

論文著者の紹介

研究者:Jishan Wu (吴 继善)
研究者の経歴:1993–1997 B.Sc., Wuhan University, China

1997–2000 M.Sc., Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China (Prof. X. Wang and Prof. F. Wang)
2000–2004 Ph.D., Max-Planck Institute for Polymer Research, Germany (Prof. K Müllen)
2004–2005 Project leader, Max-Planck Institute for Polymer Research, Germany
2005–2007 Postdoc, University of California at Los Angeles, USA (Prof. Sir F. Stoddart)
2007–2011 Assistant Professor, National University of Singapore, Singapore
2012–2017 Associate Professor, National University of Singapore, Singapore
2017– Professor, National University of Singapore, Singapore

研究内容:特異な芳香族構造の開発、印刷可能な電気素子デバイス開発、近赤外線吸収色素の開発

論文の概要

著者らはまず、市販の化合物から5段階でジアセチレン3を合成した (図2A)。続いて、Cu(OAc)2を用いるグレーサー–エグリントンカップリングによりπ拡張[n]ラジアレンER-3(収率27%)、ER-4(収率14%)、ER-5(収率7%)の合成を達成した。得られたER-n(n = 3 and 4)の分子構造はX線解析で明らかにされている[5]ER-4の中心環部分の炭素–炭素結合長に結合長交替が見られたため、ER-4は芳香族性を示さない (図2B)[5, 6]

続いて、合成したER-nの還元体(ER-n2–)の調製および芳香族性の調査に着手した (図2C)。ER-4に2.2当量のナトリウムアントラセニドを作用させ、二電子還元されたER-42–を調製した。還元により、1H NMRにおけるプロトンaが低磁場側に大きくシフトした (図2D)。これは隣接する中心環からの非遮蔽効果と考えられる。また、NICS計算[7]では、還元により中心環内部に遮蔽領域が形成された。これらの結果は、ER-42–の中心環に芳香族性が発現したことを示唆している。ER-42–の中心環に芳香族性が発現したのは、ER-4の還元後、中心環とフルオレン部位での電荷分離により18π電子系となったためと考えられる。さらに、ACIDおよびICSSによる計算結果も還元に伴うER-42–の芳香族性の発現を支持している。詳細は論文を参照されたい。

加えて、ER-42–は室温での1H NMRでブロードしたピークを与えたため、ESR測定にて電子構造を解析した (図2E)。ER-42–のESR測定では幅広のシグナルが観測され、降温に伴いシグナル強度が減少したため、ER-42–はジラジカル種であると明らかとなった。ER-42–は二つのラジカル中心の間に交差共役構造をもつため、中心環は開殻ジラジカル特性と芳香族性が共存する特異な性質を示すと考えられる。これはER-52–も同様である。一方で、ER-32–は二つのラジカル中心の間に交差共役構造をもたないため、開殻ジラジカル特性をもたない(閉殻クムレン構造)。したがって、ER-n2–は環構造に依存して、閉殻もしくは開殻構造をもつことが明らかにされた。

図2. (A) ER-nの合成 (B) ER-4の分子構造 (C) ER-n2–の調製 (D) ER-4の還元による芳香族性の発現 (E) ER-42–の開殻ジラジカル特性 (論文より引用、一部改変)

 

以上、末端にフルオレン骨格をもつπ拡張[n]ラジアレンER-nとその還元体ER-n2–の合成に成功した。本研究でも、末端のフルオレン構造がジアニオン種ER-n2–の安定化に寄与している。各種測定により、ER-nが二電子還元によりHückel則に基づく芳香族性を発現することが実証された。加えて、ER-n2–は環構造に依存して、閉殻もしくは開殻構造をもつことが明らかになった。

参考文献

  1. Gholami, M.; Tykwinski, R. R. Oligomeric and Polymeric Systems with a Cross-Conjugated π-Framework. Chem. Rev. 2006, 106, 4997–5027. DOI: 10.1021/cr0505573.
  2. Lepetit,; Nielsen,M. B.; Diederich, F.; Chauvin, R. Aromaticity and Electron Affinity of Carbok–[3]radialenes, k = 0, 1, 2. Chem. Eur. J. 2003, 9, 5056–5066. DOI: 10.1002/chem.200305070.
  3. Iyoda, M.; Otani, H.; Oda, M. Tris(fluoren-9-ylidene)cyclopropane, a Novel [3]Radialene. Angew. Chem., Int. Ed. 1988, 27, 1080–1081. DOI: 10.1002/anie.198810801.
  4. Boldi, A. M.; Diederich, F. Expanded Radialenes: A Novel Class of Cross-Conjugated Macrocycles. Angew. Chem., Int. Ed. 1994, 33, 468–471. DOI: 10.1002/anie.199404681.
  5. ER-4のX線構造解析は結晶の質が悪いため正確ではないが、ER-4で揃えるためにここでは採用している。
  6. 芳香族性を示す場合、π電子の非局在化によって、結合長交替は限りなく小さくなる。
  7. NICS計算では、全てのMes基をプロトンに置き換えたモデル化合物で計算している。

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 化学の力で迷路を解く!
  2. 同位体効果の解釈にはご注意を!
  3. ルィセンコ騒動のはなし(前編)
  4. 分子のねじれの強さを調節して分子運動を制御する
  5. ホウ素から糖に手渡される宅配便
  6. 近傍PCET戦略でアルコキシラジカルを生成する
  7. 新規色素設計指針を開発 -世界最高の太陽光エネルギー変換効率の実…
  8. ブロック共重合体で無機ナノ構造を組み立てる

注目情報

ピックアップ記事

  1. 第92回―「金属錯体を結合形成触媒へ応用する」Rory Waterman教授
  2. 第110回―「動的配座を制御する化学」Jonathan Clayden教授
  3. ナイロンに関する一騒動 ~ヘキサメチレンジアミン供給寸断
  4. エチルマレイミド (N-ethylmaleimide)
  5. 対決!フタロシアニンvsポルフィリン
  6. ロジウム(I)触媒を用いるアリールニトリルの炭素‐シアノ基選択的な切断とホウ素化反応
  7. チャールズ・リーバー Charles M. Lieber
  8. MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」
  9. 2010年10大化学ニュース
  10. 有機反応を俯瞰する ー縮合反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP