[スポンサーリンク]

一般的な話題

分子標的の化学1「2012年ノーベル化学賞GPCRを導いた親和クロマトグラフィー技術」

[スポンサーリンク]

本日12月10日(正確にいうと日本時間では11日午前0時半)はノーベル賞の授賞式典だそうで、受賞者がスウェーデンの首都ストックホルムに集まった様子は、テレビニュースなどでも報道されています。今年のノーベル化学賞は「Gタンパク質共役型受容体の研究」が評価され、ロバート・レフコウィッツ氏とブライアン・コビルカ氏に与えられました。

ところで、このGタンパク質共役型受容体(G protein coupled receptor; GPCR)。そもそも、どうやってモノをとってきたのでしょうか。実は、ケミカルバイオロジーの花形のひとつ、アフィニティクロマトグラフィーでとってきたものなのです。

アフィニティクロマトグラフィー(親和クロマトグラフィー)とは、リガンド生理活性物質と直接に相互作用するタンパク質を、物理的な結合能力にもとづいて分離するための方法です。アフィニティーカラムを釣り竿にたとえれば、リガンド生理活性物質が釣り針つきの餌に該当します。構造活性相関にもとづいて、結合能力を失わないようにリガンド生理活性物質を結びつけたカラムビーズを合成。これを用いて標的を釣りあげるのです。

レフコウィッツ氏はGタンパク質共役型受容体が細胞膜に存在することを1970年に示し、コビルカ氏がポスドクをしていた1986年にアミノ酸配列の決定に成功。Gタンパク質共役型受容体はリガンド生理活性物質を複数のタンパク質領域で囲い込むためやわらかく、膜タンパク質の中でも困難が予想されていたものの、コビルカ氏はひとひねりの工夫でみごと結晶化に成功し、2007年に立体構造を解き明かしました。ノーベル賞を受けることとなるこのような経緯の中で、とりわけ研究の中心にあった標的は、Gタンパク質共役型受容体のひとつアドレナリン受容体です。

14年の歳月をかけて

そもそもレフコウィッツ氏の研究チームが、アドレナリン受容体の単離に挑戦の手をあげたのは、試作品アフィニティクロマトグラフィーを報告した米国アカデミー紀要1972年[1]のこと。全アミノ酸配列の決定を達成した時期はというとネイチャー1986年[5]。実に14年間、ひとつのモノを追いかけてきたことになります。

はじめて米国アカデミー紀要1972年[1]に報告したアフィニティカラムは、アドレナリンそのものをビーズ状アガロースにつなげただけのシンプルなものでした。かすかにタンパク質らしいものがアフィニティカラムにかかっていたようですが、配列を解読するために必要な量にはほど遠いものでした。

ここから10年余。アフィニティクロマトグラフィーでアドレナリン受容体をとろうと、たびかさなる改良が加えられます。生化学誌1976年[2]では既知のアドレナリンアゴニスト作動薬)およびアンタゴニスト拮抗薬)いくつかについて受容体結合部位との関係を精査、それをふまえて生化学誌1979年[3]では改良版のアフィニティカラムを開発しました。釣り餌にはアドレナリンそのものではなく、アルプレノロールという類似の化合物を使っています。レフコウィッツ研究チームにとって結局、アフィニティカラム材料は、これが決定版になりました。

そして、生化学誌1981年[4]では分子量60000のタンパク質の存在を確認。そして、ネイチャー1986年[5]でアミノ酸断片配列を解読。そのままcDNAクローニングからの全長アミノ酸配列の決定を達成しました。

 

巨人の肩の上に立つ

そもそも膜タンパク質をアフィニティクロマトグラフィーで取ろうということが、今では考えようもないことで、14年にわたる条件検討のすさまじさがおのずと感じられます。細胞膜画分を溶液に分散させるとき、タンパク質がよく変性しなかったものです。

また、モノがとれたと思ったらまったくの期待外れであったりなど、アフィニティクロマトグラフィーは擬陽性になることがままあります。しかし、電気泳動してバンドが得られてから実際にアミノ酸配列が分かるまでの期間に、アフィニティカラムにかかったタンパク質が、目的のアドレナリン受容体であることを、レフコウィッツ氏の研究チームは複数の方法で確認しています。このあたり、実験系の整備力を含め、さすがと思わされてしまいます。

こうやって、30年近く前の論文を読んでみると、それはそれでいろいろと考えさせられるものですね。生化学会誌(Journal of Biological Chemistry, J. Biol, Chem., JBC)と米国アカデミー紀要(Proceedings of the National Academy of Sciences of the United States of America, Proc. Natl. Acad. Soc. USA, PNAS)では、古い論文はオープンアクセスなので確認にはちょうどよいでしょう。

巨人の肩の上に立って、科学はどちらへ発展していくのか、昔の論文を読みながら、時代の流れを感じてしまいます。今もまだ、リガンド生理活性分子の標的タンパク質の同定は簡単ではありませんが、技術の進歩に今後も注目です。

Acknowledgement

I thank a Chem-Station staff “らくとん” for critical reading of this manuscript.

 

 参考論文

  1. Lefkowitz RJ, Haber E, O’hara D (1972) “Identification of the Cardiac Beta-Adrenergic Receptor Protein: Solubilization and Purification by Affinity Chromatography.” Proc. Nat. Acad. Sci. USA
  2. Caron MG, Lefkowitz RJ (1976) “Solubilization and Characterization of the beta-Adrenergic Receptor Binding Sites of Frog Erythrocytes.” J. Biol. Chem.
  3. Caron MG, Srinivasan Y, Pitha J, Kociolek K, Lefkowitz RJ (1979) “Affinity Chromatography of the beta-Adrenergic Receptor.” J. Biol. Chem.
  4. Shorr RG, Lefkowitz RJ, Caron MG (1981) “Purification of the beta-adrenergic receptor. Identification of the hormone binding subunit.” J. Biol. Chem.
  5. Dixon RAF, Kobilka BK, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986) “Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin.” Nature

関連書籍

[amazonjs asin=”462108626X” locale=”JP” title=”ケミカルバイオロジー 成功事例から学ぶ研究戦略”][amazonjs asin=”4521016715″ locale=”JP” title=”ナノアフィニティビーズのすべて―ケミカルバイオロジーの新戦略”][amazonjs asin=”4887305974″ locale=”JP” title=”植物の知恵―化学と生物学からのアプローチ”]

 

関連ウェブページ

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 有機硫黄ラジカル触媒で不斉反応に挑戦
  2. 文献検索サイトをもっと便利に:X-MOLをレビュー
  3. 【PR】Twitter、はじめました
  4. 保護基の使用を最小限に抑えたペプチド伸長反応の開発
  5. エントロピーを表す記号はなぜSなのか
  6. マイクロフロー瞬間pHスイッチによるアミノ酸NCAの高効率合成
  7. ダニエル レオノリ Daniele Leonori
  8. マイクロプラスチックの諸問題

注目情報

ピックアップ記事

  1. 触媒表面の化学反応をナノレベルでマッピング
  2. 「生物素材で新規構造材料を作り出す」沼田 圭司 教授
  3. 【読者特典】第92回日本化学会付設展示会を楽しもう!PartIII+薬学会も!
  4. #環境 #SDGs マイクロ波によるサステナブルなものづくり (プラ分解、フロー合成、フィルム、乾燥、焼成)
  5. 京都賞―受賞化学者一覧
  6. 近況報告PartIV
  7. 触媒化学との「掛け算」によって展開される広範な研究
  8. マテリアルズ・インフォマティクスの基礎知識とよくある誤解
  9. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  10. ジイミド還元 Diimide Reduction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年12月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP