[スポンサーリンク]

化学者のつぶやき

印象に残った天然物合成 2

[スポンサーリンク]

 

7月になり、どんどん蒸し暑くなってきましたが、いかがお過ごしでしょうか?

大学院生時代に先生方によく言われたのは、

<晴れの日の場合>

「今日は『実験日和』だ。バリバリ実験しなさい」

<雨の日の場合>

「雨でどうせ遊びに行けないんだから、バリバリ実験しなさい」

……蒸し暑いですが、とりあえず皆様元気よくやっていきましょう。

今回はWoodwardらによるErythromycinの全合成 1-3)を紹介します。

Erythromycinは、10個の不斉点を持つ14員環ラクトンと2つのデオキシ糖から構成されているマクロライドです。 合成する上で不斉点の構築は大きな見せ場の1つになるでしょう。

Woodwardらの合成ルートは下図に示すように、マクロラクトン化と2回のグリコシル化を最後に行う計画です。ラクトン化の前駆体は類似構造の繰り返し(図の水色枠部)であるため、化合物2を合成すればよいと考えられ、その等価体として環状ジチオアセタール3を調製することとしました。環状ジチオアセタール3は、ラネーニッケルを用いて脱硫すれば化合物2へ変換することができます。鎖状の分子を環状化合物として取り扱うことによって立体化学を制御しやすくする、というのがWoodwardのやり方なのです。

fs1.1
実際、エノン4の1,2-還元、およびオレフィン部位のジオール化を(基質コントロールで)立体選択的に行うことができ、化合物3を合成することに成功しています。Erythromycinの構造と改めて見比べてみると、この化合物3の設計は実に巧妙です。本全合成において、この設計が一番の見どころと言っても過言ではないかもしれません。

fs1.2

続いて、環化前駆体8の合成です。まず、得られた環状ジチオアセタール3をケトン5およびアルデヒド6へと変換します。ケトン5はMOM基をTFAで除去したのちに、アルコールを酸化することによって、アルデヒド6はラネーニッケルで脱硫とベンジル基の除去を行ったのち、脱水、オゾン分解を行うことによって合成しました。ケトン5はアルドール反応によってアルデヒド6と連結し、脱硫などの官能基変換によりセコ酸8へと導かれます。

fs1.3.1
さて、ここからマクロラクトン化の挑戦です。天然物からの減成も駆使して、17種類もの環化前駆体を用意し、検討を行っています。詳細は割愛しますが、下に示す3つの化合物のみが望むラクトンを生成する結果となっています。そのうち、基質AおよびBに関しては20%にも満たない苦しい収率です。しかしながら、どうやらジオールを環状の保護基で抑えることでラクトン化しやすいという知見を得て、基質Cに辿り着きました(収率70%!!)。
fs1.4.1

さらにいくつかの検討を重ね、環状カーバメート構造を有する環化前駆体9を用いてマクロラクトン化を行い、ラクトン10を収率70%で合成しています。

2015-11-16_14-10-34

 

最後に2回のグリコシル化です。溶解性の問題などがあり、環状カーバメートは先に除去しなければならなかったようです。そのため、はじめにペンタオール11を用いたグリコシル化を行うことになりました。なんとなく3位のアルコールの反応性が一番高そうですが……まずは5位から反応するようです。なかなか読み切るのが難しいところです。論文 3)で考察されていますので参考にしてみてください。2回目のグリコシル化は3位から進行し、化合物13を合成することに成功しています。

fs1.6

 

以下、保護基の除去とアミノ基の酸化によってerythromycinの不斉全合成を達成しています。最後のペンタオールのグリコシル化については、また別の記事で書いてみたいと思っています。

さて、少し話が変わりますが、「エリスロマイシン」の「エリスロ」って一体何なのでしょうか?

まず思いつくのは、ジアステレオマーを区別する際の「エリスロ」「スレオ」です。「エリトロ」「トレオ」とも言いますね。

語源は単糖の「エリトロース」「トレオース」だそうですが……

確かにエリスロマイシンはエリトロースの部分構造を有しています。でも、エリスロマイシンに特有の構造というわけでもなさそうですよね。

エリスロ」は「」の意味を持っているそうで、例えば、赤血球=erythrocyteで、他にも接頭辞「erythro」が付く英単語はいくつもあります。

ですが……あまりエリスロマイシンとは関係がない気がします。

語源というのはなかなか難しいですね。

ちなみに「マクロライド」の名付け親はWoodwardだそうですね。

Woodwardはまさに本天然物エリスロマイシンの合成研究中に亡くなられたとのことで、論文にも

“Deceased July 8, 1979.”

と記載されています。34年前のちょうど今頃ということになりますね。

本論文は、亡くなった恩師の他、様々な方々への感謝が比較的丁寧に述べられています。

文章も大変読みやすく、検討結果や考察も詳細に書かれていますのでぜひぜひ参考にして頂ければと思います。

 

参考文献

  1.  Woodward, R. B.;  Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.-W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.; Frobel, K.; Gais, H.-J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, H. N.-C. J. Am. Chem. Soc. 1981, 103, 3210. DOI: 10.1021/ja00401a049
  2. Woodward, R. B.;  Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.-W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.; Frobel, K.; Gais, H.-J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, H. N.-C. J. Am. Chem. Soc. 1981, 103, 3213. DOI: 10.1021/ja00401a050
  3. Woodward, R. B.;  Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.-W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.; Frobel, K.; Gais, H.-J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, H. N.-C. J. Am. Chem. Soc. 1981, 103, 3215. DOI: 10.1021/ja00401a051

 

関連書籍

 

らぱ

らぱ

投稿者の記事一覧

現在、博士課程にて有機合成化学を学んでいます。 特に、生体分子を模倣した超分子化合物に興味があります。よろしくお願いします。

関連記事

  1. 有機ホウ素化合物を用いたSNi型立体特異的β-ラムノシル化反応の…
  2. Impact Factorかh-indexか、それとも・・・
  3. ケムステイブニングミキサー2015を終えて
  4. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  5. 3色に変化する熱活性化遅延蛍光材料の開発
  6. 私がケムステスタッフになったワケ(2)
  7. π電子系イオンペアの精密合成と集合体の機能開拓
  8. とある化学者の海外研究生活:スイス留学編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ペプチド模倣体としてのオキセタニルアミノ酸
  2. 階段状分子の作り方
  3. 上村 大輔 Daisuke Uemura
  4. 第43回―「均質ナノ粒子の合成と生命医学・触媒への応用」Taeghwan Hyeon教授
  5. ベンジル位アセタールを選択的に酸素酸化する不均一系触媒
  6. 「シカゴとオースティンの6年間」 山本研/Krische研より
  7. フェン・チャン Feng Zhang
  8. ユニークな名前を持つ配位子
  9. サイアメントの作ったドラマ「彼岸島」オープニングがすごい!
  10. 柴崎・東大教授が英化学会メダル受賞

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第93回―「発光金属錯体と分子センサーの研究」Cristina Lagunas教授

第93回の海外化学者インタビューは、クリスティーナ・ラグナス教授です。クイーンズ大学ベルファスト校 …

高機能性金属錯体が拓く触媒科学:革新的分子変換反応の創出をめざして

(さらに…)…

フィブロイン Fibroin

フィブロイン(Fibroin)は、繭糸(シルク)の主成分であり、繊維状タンパク質の一種である。…

「もはや有機ではない有機材料化学:フルオロカーボンに可溶な材料の創製」– MIT・Swager研より

ケムステ海外研究記の第36回はマサチューセッツ工科大学(MIT)化学科のPhD課程に在籍されている吉…

八木 政行 Masayuki Yagi

八木 政行(やぎ まさゆき、Yagi Masayuki、1968年 -)は、日本の化学者である (写…

有機化学を俯瞰する –古代ギリシャ哲学から分子説の誕生まで–【前編】

本連載では、生命体を特別視する "生気説" が覆されたことにより、有機合成化学の幕が開いたことについ…

第92回―「金属錯体を結合形成触媒へ応用する」Rory Waterman教授

第92回の海外化学者インタビューは、ロリー・ウォーターマン教授です。バーモント大学化学科に在籍し、有…

第五回ケムステVシンポジウム「最先端ケムバイオ」を開催します!

コロナウイルスの自粛も全国で解かれ、日本国内はだいぶ復帰に近づいてました(希望的観測)。しかし今年度…

Chem-Station Twitter

PAGE TOP