[スポンサーリンク]

archives

光反応性ジアジリンアミノ酸:Fmoc-Tdf-OH, H-Tdf-OH, Boc-Tdf-OH

[スポンサーリンク]

光反応性ジアジリンアミノ酸は、レセプターであるタンパク質との間で共有結合を形成するという特性があり、高次構造が変化しても解離することがないため、SDS-PAGEのように変性操作をともなう実験でも使用できる。レセプターとリガンドの結合部位を決定する実験、特にSDS-PAGEを使用する実験を考えておられる方におすすめです。

SDS-PAGEによるタンパク質高次構造の変化

生体内において、レセプターとリガンドは鍵と鍵穴のように結合する相手が決まっており、その結合の結果として様々な現象を引き起こしています。このレセプターとリガンドの相互作用を理解することは生化学や薬理学の研究で最も重要なことの1つです。複数のサブユニットからなるタンパク質でできたレセプターについて、どのサブユニットがレセプターとして働いているのかを知るための方法として電気泳動がありますが、その中でよく使用される手法の一つにSDS-PAGEがあげられます(1)SDS-PAGEでは、資料の前処理にSDSを用いてタンパク質の高次構造を壊す必要があるのですが、この時にレセプター(サブユニット)とリガンドが解離してしまっては、リガンドがどのサブユニットに結合していたかわからず役に立ちません。

図1. SDS-PAGEによるタンパク質高次構造の変化 (1)レセプター(複数のサブユニットから成り、4次構造を持つタンパク質) (2)リガンドが結合する (3)電気泳動の前処理によりサブユニットがバラバラになり (4)二次構造もほどけ、一次構造となる

 

今回紹介する光反応性ジアジリンアミノ酸は、レセプターであるタンパク質との間で共有結合を形成するという特性があり、高次構造が変化しても解離することがないため、SDS-PAGEのように変性操作をともなう実験でも使用できる便利な標識試薬です。

光反応性ジアジリンアミノ酸

ジアジリン部位は、光照射するとカルベンを生じます。カルベンは非常に反応性に富んでいるため、最近接の分子と共有結合する性質をもっています(図2)。

図2, ジアジリンの光照射によるクロスリンク(イメージ)

 

通常、リガンドは対応するレセプターと水素結合やイオン結合により可逆的な結合を作ります。SDS-PAGEでは前述の通り前処理によってリガンドとレセプターが解離してしまい、どのタンパク質あるいはサブユニットがレセプターとして働いていたのか分からなくなります。しかし、ジアジリンアミノ酸を導入したリガンドを用いた場合、光照射することで最近接分子であるレセプターとの間に共有結合が形成されるため変性条件下でも解離せず、標識したリガンドが結合しているタンパク質を知ることができます。

ジアジリン化合物とアジド化合物の比較

ジアジリンと同様によく用いられるアジド化合物の特徴について比較したものが、表1です。ジアジリンの特徴は、ニトロ化やFriedel-Crafts反応などの過酷な条件に耐えることができるほど化学的に安定で、ペプチド固相合成においても保護せず用いることができるため、様々なリガンドへの導入が可能です。

表1. ジアジリン化合物とアジド化合物の比較

 

リガンドがレセプターと結合した後の光反応についても、比較的短時間の紫外線照射で反応が進行するため、タンパク質の変性や失活を防ぐことができるという点で有利です。たとえば、リガンドとレセプターを共有結合させるための類似の方法としてアジドへの光照射でナイトレンを生じさせる方法が挙げられます。アジド→ナイトレンの生成にはλ= 300nmの紫外線が必要なのに対して,ジアジリン→カルベンの生成は、アジドの場合に比べてやや長波長(360nm)で反応を進行させることができます。また、ナイトレンよりもカルベンの反応性の方が高いため、より短時間の光照射でスムースに標識反応を進めることができます。

共有結合の強さについても、アジドでのクロスリンクはアミノ酸配列を決めるためのエドマン分解で切断されますが、ジアジリンの場合はその程度で切れることはありません。ジアジリンを標識したリガンドとレセプターが結合しなかった場合、ジアジリンの最近接分子はレセプターではなく周辺に存在する水などの溶媒となり、ジアジリンとレセプターが共有結合を作ることはありません(3)。合成のしやすさではアジド化合物の方が有利となりますが、SDS-PAGEなど実際の解析操作においてはジアジリンの方が有利となっています。

図3. ジアジリン導入済みリガンドの光反応の様子 (a) 対応するレセプターと結合した場合 (b) 対応するレセプターに結合しなかった場合

TDfを用いた研究

Tdfを利用した最近の研究では、アンギオテンシンⅡがGタンパク共受容体に作用するときのメチオニン(Met)選択性を調べるために、C端にFmoc-Tdfを結合させたペプチドが使用されました(図4-1)。

図4-1. Tdfを利用した研究例(1)

 

カルベンの高い反応性は、リガンドの結合点を決めるのに非常に便利であるといえます。さらに、Tdfは生化学実験の試薬としてだけでなく、治療薬としての応用が期待されています。例えば、アルツハイマーの治療薬が挙げられます(図4-2)。アルツハイマーの治療としては、アミロイドβの凝集を妨げることが一般に知られています。Kinoらのグループは、アミロイドβに親和性を持つ環状ペプチドにジアジリン部位を導入し、UV照射することによってアミロイドβのTyr10と環状ペプチドのジアジリン部位との間に共有結合を生じることに成功し、その結果アミロイドβの凝集力や毒性を低下させることを報告しています。

図4-2, Tdfを利用した研究例(2)

 

レセプターとリガンドの結合部位を決定する実験、特にSDS-PAGEを使用する実験を考えておられる方におすすめです。

商品とお問い合わせ

渡辺化学工業株式会社
〒730‐0853 広島市中区堺町2丁目2番5号
TEL:(082) 231‐0540 FAX:(082) 231‐1451
ホームページ:http://www.watanabechem.co.jp
E‐mail: sales@watanabechem.co.jp

*本記事は渡辺化学工業様からの寄稿記事です。

関連リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 「ヨーロッパで修士号と博士号を取得する」 ―ETH Zürich…
  2. 反応経路最適化ソフトウェアが新しくなった 「Reaction p…
  3. ワンチップ顕微鏡AminoMEを買ってみました
  4. アルケニルアミドに2つアリールを入れる
  5. 架橋シラ-N-ヘテロ環合成の新手法
  6. オルガネラ選択的な薬物送達法:②小胞体・ゴルジ体・エンドソーム・…
  7. なれない人たちの言い訳(?)-研究者版-
  8. 化学者のためのWordマクロ -Supporting Infor…

注目情報

ピックアップ記事

  1. 「抗炎症」と「抗酸化」組み合わせ脱毛抑制効果を増強
  2. 化学産業を担う人々のための実践的研究開発と企業戦略
  3. エマニュエル・シャルパンティエ Emmanuel Charpentie
  4. ゴードン会議に参加しました【アメリカで Ph.D. を取る: 国際学会の巻】
  5. バニリン /Vanillin
  6. 有機合成化学協会誌2024年9月号:ホウ素媒介アグリコン転移反応・有機電解合成・ヘキサヒドロインダン骨格・MHAT/RPC機構・CDC反応
  7. 第25回グリーン・サステイナブル ケミストリー賞 候補業績 募集のご案内
  8. 第23回「化学結合の自在切断 ・自在構築を夢見て」侯 召民 教授
  9. ペンタシクロアナモキシ酸 pentacycloanamoxic acid
  10. 電子や分子に応答する“サンドイッチ”分子からなるナノカプセルを開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP