[スポンサーリンク]

archives

光反応性ジアジリンアミノ酸:Fmoc-Tdf-OH, H-Tdf-OH, Boc-Tdf-OH

[スポンサーリンク]

光反応性ジアジリンアミノ酸は、レセプターであるタンパク質との間で共有結合を形成するという特性があり、高次構造が変化しても解離することがないため、SDS-PAGEのように変性操作をともなう実験でも使用できる。レセプターとリガンドの結合部位を決定する実験、特にSDS-PAGEを使用する実験を考えておられる方におすすめです。

SDS-PAGEによるタンパク質高次構造の変化

生体内において、レセプターとリガンドは鍵と鍵穴のように結合する相手が決まっており、その結合の結果として様々な現象を引き起こしています。このレセプターとリガンドの相互作用を理解することは生化学や薬理学の研究で最も重要なことの1つです。複数のサブユニットからなるタンパク質でできたレセプターについて、どのサブユニットがレセプターとして働いているのかを知るための方法として電気泳動がありますが、その中でよく使用される手法の一つにSDS-PAGEがあげられます(1)SDS-PAGEでは、資料の前処理にSDSを用いてタンパク質の高次構造を壊す必要があるのですが、この時にレセプター(サブユニット)とリガンドが解離してしまっては、リガンドがどのサブユニットに結合していたかわからず役に立ちません。

図1. SDS-PAGEによるタンパク質高次構造の変化 (1)レセプター(複数のサブユニットから成り、4次構造を持つタンパク質) (2)リガンドが結合する (3)電気泳動の前処理によりサブユニットがバラバラになり (4)二次構造もほどけ、一次構造となる

 

今回紹介する光反応性ジアジリンアミノ酸は、レセプターであるタンパク質との間で共有結合を形成するという特性があり、高次構造が変化しても解離することがないため、SDS-PAGEのように変性操作をともなう実験でも使用できる便利な標識試薬です。

光反応性ジアジリンアミノ酸

ジアジリン部位は、光照射するとカルベンを生じます。カルベンは非常に反応性に富んでいるため、最近接の分子と共有結合する性質をもっています(図2)。

図2, ジアジリンの光照射によるクロスリンク(イメージ)

 

通常、リガンドは対応するレセプターと水素結合やイオン結合により可逆的な結合を作ります。SDS-PAGEでは前述の通り前処理によってリガンドとレセプターが解離してしまい、どのタンパク質あるいはサブユニットがレセプターとして働いていたのか分からなくなります。しかし、ジアジリンアミノ酸を導入したリガンドを用いた場合、光照射することで最近接分子であるレセプターとの間に共有結合が形成されるため変性条件下でも解離せず、標識したリガンドが結合しているタンパク質を知ることができます。

ジアジリン化合物とアジド化合物の比較

ジアジリンと同様によく用いられるアジド化合物の特徴について比較したものが、表1です。ジアジリンの特徴は、ニトロ化やFriedel-Crafts反応などの過酷な条件に耐えることができるほど化学的に安定で、ペプチド固相合成においても保護せず用いることができるため、様々なリガンドへの導入が可能です。

表1. ジアジリン化合物とアジド化合物の比較

 

リガンドがレセプターと結合した後の光反応についても、比較的短時間の紫外線照射で反応が進行するため、タンパク質の変性や失活を防ぐことができるという点で有利です。たとえば、リガンドとレセプターを共有結合させるための類似の方法としてアジドへの光照射でナイトレンを生じさせる方法が挙げられます。アジド→ナイトレンの生成にはλ= 300nmの紫外線が必要なのに対して,ジアジリン→カルベンの生成は、アジドの場合に比べてやや長波長(360nm)で反応を進行させることができます。また、ナイトレンよりもカルベンの反応性の方が高いため、より短時間の光照射でスムースに標識反応を進めることができます。

共有結合の強さについても、アジドでのクロスリンクはアミノ酸配列を決めるためのエドマン分解で切断されますが、ジアジリンの場合はその程度で切れることはありません。ジアジリンを標識したリガンドとレセプターが結合しなかった場合、ジアジリンの最近接分子はレセプターではなく周辺に存在する水などの溶媒となり、ジアジリンとレセプターが共有結合を作ることはありません(3)。合成のしやすさではアジド化合物の方が有利となりますが、SDS-PAGEなど実際の解析操作においてはジアジリンの方が有利となっています。

図3. ジアジリン導入済みリガンドの光反応の様子 (a) 対応するレセプターと結合した場合 (b) 対応するレセプターに結合しなかった場合

TDfを用いた研究

Tdfを利用した最近の研究では、アンギオテンシンⅡがGタンパク共受容体に作用するときのメチオニン(Met)選択性を調べるために、C端にFmoc-Tdfを結合させたペプチドが使用されました(図4-1)。

図4-1. Tdfを利用した研究例(1)

 

カルベンの高い反応性は、リガンドの結合点を決めるのに非常に便利であるといえます。さらに、Tdfは生化学実験の試薬としてだけでなく、治療薬としての応用が期待されています。例えば、アルツハイマーの治療薬が挙げられます(図4-2)。アルツハイマーの治療としては、アミロイドβの凝集を妨げることが一般に知られています。Kinoらのグループは、アミロイドβに親和性を持つ環状ペプチドにジアジリン部位を導入し、UV照射することによってアミロイドβのTyr10と環状ペプチドのジアジリン部位との間に共有結合を生じることに成功し、その結果アミロイドβの凝集力や毒性を低下させることを報告しています。

図4-2, Tdfを利用した研究例(2)

 

レセプターとリガンドの結合部位を決定する実験、特にSDS-PAGEを使用する実験を考えておられる方におすすめです。

商品とお問い合わせ

渡辺化学工業株式会社
〒730‐0853 広島市中区堺町2丁目2番5号
TEL:(082) 231‐0540 FAX:(082) 231‐1451
ホームページ:http://www.watanabechem.co.jp
E‐mail: sales@watanabechem.co.jp

*本記事は渡辺化学工業様からの寄稿記事です。

関連リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. シャンパンの泡、脱気の泡
  2. 立春の卵
  3. チオカルバマートを用いたCOSのケミカルバイオロジー
  4. 細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドがで…
  5. 製薬会社5年後の行方
  6. まっすぐなペプチドがつまらないなら「さあ輪になって踊ろ!」
  7. 低温低圧・常温常圧窒素固定の反応開発 最新情報サマリー その1
  8. 創薬人育成サマースクール2019(関東地区) ~くすりを創る研究…

注目情報

ピックアップ記事

  1. 林・ヨルゲンセン触媒 Hayashi-Jørgensen Catalyst
  2. 全薬工業とゼファーマ、外用抗真菌薬「ラノコナゾール」配合の水虫治療薬を発売
  3. PdとTiがVECsの反応性をひっくり返す?!
  4. トロスト不斉アリル位アルキル化反応 Trost Asymmetric Allylic Alkylation
  5. DIC岡里帆の新作CMが公開
  6. ケネディ酸化的環化反応 Kennedy Oxydative Cyclization
  7. 伯東、高機能高分子材料「デンドリマー」、製造期間10分の1に
  8. sinceの使い方
  9. 住友化学の9月中間営業益は+20.5%、精密・医薬など好調で
  10. 光で形を変える結晶

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP