[スポンサーリンク]

archives

光反応性ジアジリンアミノ酸:Fmoc-Tdf-OH, H-Tdf-OH, Boc-Tdf-OH

[スポンサーリンク]

光反応性ジアジリンアミノ酸は、レセプターであるタンパク質との間で共有結合を形成するという特性があり、高次構造が変化しても解離することがないため、SDS-PAGEのように変性操作をともなう実験でも使用できる。レセプターとリガンドの結合部位を決定する実験、特にSDS-PAGEを使用する実験を考えておられる方におすすめです。

SDS-PAGEによるタンパク質高次構造の変化

生体内において、レセプターとリガンドは鍵と鍵穴のように結合する相手が決まっており、その結合の結果として様々な現象を引き起こしています。このレセプターとリガンドの相互作用を理解することは生化学や薬理学の研究で最も重要なことの1つです。複数のサブユニットからなるタンパク質でできたレセプターについて、どのサブユニットがレセプターとして働いているのかを知るための方法として電気泳動がありますが、その中でよく使用される手法の一つにSDS-PAGEがあげられます(1)SDS-PAGEでは、資料の前処理にSDSを用いてタンパク質の高次構造を壊す必要があるのですが、この時にレセプター(サブユニット)とリガンドが解離してしまっては、リガンドがどのサブユニットに結合していたかわからず役に立ちません。

図1. SDS-PAGEによるタンパク質高次構造の変化 (1)レセプター(複数のサブユニットから成り、4次構造を持つタンパク質) (2)リガンドが結合する (3)電気泳動の前処理によりサブユニットがバラバラになり (4)二次構造もほどけ、一次構造となる

 

今回紹介する光反応性ジアジリンアミノ酸は、レセプターであるタンパク質との間で共有結合を形成するという特性があり、高次構造が変化しても解離することがないため、SDS-PAGEのように変性操作をともなう実験でも使用できる便利な標識試薬です。

光反応性ジアジリンアミノ酸

ジアジリン部位は、光照射するとカルベンを生じます。カルベンは非常に反応性に富んでいるため、最近接の分子と共有結合する性質をもっています(図2)。

図2, ジアジリンの光照射によるクロスリンク(イメージ)

 

通常、リガンドは対応するレセプターと水素結合やイオン結合により可逆的な結合を作ります。SDS-PAGEでは前述の通り前処理によってリガンドとレセプターが解離してしまい、どのタンパク質あるいはサブユニットがレセプターとして働いていたのか分からなくなります。しかし、ジアジリンアミノ酸を導入したリガンドを用いた場合、光照射することで最近接分子であるレセプターとの間に共有結合が形成されるため変性条件下でも解離せず、標識したリガンドが結合しているタンパク質を知ることができます。

ジアジリン化合物とアジド化合物の比較

ジアジリンと同様によく用いられるアジド化合物の特徴について比較したものが、表1です。ジアジリンの特徴は、ニトロ化やFriedel-Crafts反応などの過酷な条件に耐えることができるほど化学的に安定で、ペプチド固相合成においても保護せず用いることができるため、様々なリガンドへの導入が可能です。

表1. ジアジリン化合物とアジド化合物の比較

 

リガンドがレセプターと結合した後の光反応についても、比較的短時間の紫外線照射で反応が進行するため、タンパク質の変性や失活を防ぐことができるという点で有利です。たとえば、リガンドとレセプターを共有結合させるための類似の方法としてアジドへの光照射でナイトレンを生じさせる方法が挙げられます。アジド→ナイトレンの生成にはλ= 300nmの紫外線が必要なのに対して,ジアジリン→カルベンの生成は、アジドの場合に比べてやや長波長(360nm)で反応を進行させることができます。また、ナイトレンよりもカルベンの反応性の方が高いため、より短時間の光照射でスムースに標識反応を進めることができます。

共有結合の強さについても、アジドでのクロスリンクはアミノ酸配列を決めるためのエドマン分解で切断されますが、ジアジリンの場合はその程度で切れることはありません。ジアジリンを標識したリガンドとレセプターが結合しなかった場合、ジアジリンの最近接分子はレセプターではなく周辺に存在する水などの溶媒となり、ジアジリンとレセプターが共有結合を作ることはありません(3)。合成のしやすさではアジド化合物の方が有利となりますが、SDS-PAGEなど実際の解析操作においてはジアジリンの方が有利となっています。

図3. ジアジリン導入済みリガンドの光反応の様子 (a) 対応するレセプターと結合した場合 (b) 対応するレセプターに結合しなかった場合

TDfを用いた研究

Tdfを利用した最近の研究では、アンギオテンシンⅡがGタンパク共受容体に作用するときのメチオニン(Met)選択性を調べるために、C端にFmoc-Tdfを結合させたペプチドが使用されました(図4-1)。

図4-1. Tdfを利用した研究例(1)

 

カルベンの高い反応性は、リガンドの結合点を決めるのに非常に便利であるといえます。さらに、Tdfは生化学実験の試薬としてだけでなく、治療薬としての応用が期待されています。例えば、アルツハイマーの治療薬が挙げられます(図4-2)。アルツハイマーの治療としては、アミロイドβの凝集を妨げることが一般に知られています。Kinoらのグループは、アミロイドβに親和性を持つ環状ペプチドにジアジリン部位を導入し、UV照射することによってアミロイドβのTyr10と環状ペプチドのジアジリン部位との間に共有結合を生じることに成功し、その結果アミロイドβの凝集力や毒性を低下させることを報告しています。

図4-2, Tdfを利用した研究例(2)

 

レセプターとリガンドの結合部位を決定する実験、特にSDS-PAGEを使用する実験を考えておられる方におすすめです。

商品とお問い合わせ

渡辺化学工業株式会社
〒730‐0853 広島市中区堺町2丁目2番5号
TEL:(082) 231‐0540 FAX:(082) 231‐1451
ホームページ:http://www.watanabechem.co.jp
E‐mail: sales@watanabechem.co.jp

*本記事は渡辺化学工業様からの寄稿記事です。

関連リンク

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 知の市場:無料公開講座参加者募集のご案内
  2. 私がケムステスタッフになったワケ(3)
  3. 精密分子設計による高感度MRI分子プローブの開発 ~早期診断に向…
  4. リチウムイオン電池の特許動向から見た今後の開発と展望【終了】
  5. 発想の逆転で糖鎖合成
  6. プロペランの真ん中
  7. 二窒素の配位モードと反応性の関係を調べる: Nature Rev…
  8. 化学者のためのエレクトロニクス入門① ~電子回路の歴史編~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「世界の最先端で研究する」という夢と実際 ーカリフォルニア大学バークレー校 Long 研究室より
  2. 5年で57億円かかるエルゼビアの論文閲覧システムの契約交渉で大学側が値下げを要求
  3. 第117回―「感染症治療を志向したケミカルバイオロジー研究」Erin Carlson准教授
  4. 有機無機ハイブリッドペロブスカイトはなぜ優れているのか?
  5. 超分子化学と機能性材料に関する国際シンポジウム2018
  6. ウォルフガング-クローティル Wolfgang Kroutil
  7. 化学者のためのエレクトロニクス入門④ ~プリント基板業界で活躍する化学メーカー編~
  8. 前田 浩 Hiroshi Maeda
  9. アントニオ・M・エチャヴァレン Antonio M. Echavarren
  10. 水素化ホウ素ナトリウムを使う超小型燃料電池を開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在

第613回のスポットライトリサーチは、千葉大学 石井久夫研究室の大原 正裕(おおはら まさひろ)さん…

GoodNotesに化学構造が書きやすいノートが新登場!その使用感はいかに?

みなさんは現在どのようなもので授業ノートを取っていますでしょうか。私が学生だったときには電子…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP