[スポンサーリンク]

chemglossary

酵素触媒反応の生成速度を考えるー阻害剤入りー

[スポンサーリンク]

hodaです。以前、酵素触媒反応の生成速度を考える-ミカエリス・メンテン機構-という記事を書きました。以前考えたミカエリス・メンテン機構では、酵素と基質の反応は阻害されないと考えていました。今回は酵素などの働きを阻害する阻害剤を入れ、前回よりも複雑な機構を持つ酵素触媒反応の生成速度を考えたいと思います。

ざっくりミカエリス・メンテン機構とは

ミカエリス・メンテン機構とは最もシンプルな酵素触媒反応の生成速度を求めることができるモデルです。まずは阻害剤がない酵素触媒反応であるミカエリス・メンテン機構から行きましょう。考える機構は以下のモデルです。

(a) 阻害剤なし

E…酵素 (enzyme の頭文字の E)
S…基質 (substrate の頭文字の S)
ES…酵素―基質複合体
P…生成物 (product の頭文字の P)

Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

今回の機構(a)から[ES]の濃度変化は以下の式になります。

KMはミカエリス定数と呼ばれます。

ここで存在するすべての酵素の濃度を[E0]とすると、酵素は酵素単独、または複合体を形成しているので[E0]は以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。
ミカエリス・メンテン機構についてしっかり復習したい方は以前の記事をご覧ください。

今回の本題

ミカエリス・メンテン機構では酵素1種類、基質1種類を考えていますが、実際には阻害剤がいる機構もあります。今回は阻害剤と酵素または複合体がくっついたり離れたりする可逆的阻害を行う反応について考えたいと思います。

(b) 拮抗阻害

阻害剤と基質が酵素の同一部分に作用するために競合します1

I…阻害剤

(a)阻害剤なしのときと同様に、Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

よってPの生成速度v0v0 ­= ­k3 [ES]となります。(a)と同じです。

機構(a)で求めたように[ES]の濃度変化は以下の式になります。

(a)のときと同じことから、定常状態近似により導かれる[ES]はKMを用いて(a)と同じになります。

阻害剤・酵素複合体EIの解離定数をKiとすると以下の式で表されます。

ここで存在するすべての酵素の濃度を[E0]とすると、今回は[E0]が以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。

(c) 不拮抗阻害

今回の機構の阻害剤は酵素・基質複合体に作用します1

(a)阻害剤なし、(b)拮抗阻害のときと同様に、Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

よってPの生成速度v0v0 ­= ­k3 [ES]となります。(a)(b)と同じです。

機構(a)で求めたように[ES]の濃度変化は以下の式になります。

(a)のときと同じことから、定常状態近似により導かれる[ES]はKMを用いて(a)と同じになります。

阻害剤と酵素と基質の複合体ESIの解離定数をKiiとすると以下の式で表されます。

ここで存在するすべての酵素の濃度を[E0]とすると、今回は[E0]が以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。

(d) 拮抗阻害+不拮抗阻害

(b)拮抗阻害と(c)不拮抗阻害を組み合わせた機構は以下のようになります1

(a)~(c)のときと同様に、Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

よってPの生成速度v0v0 ­= ­k3 [ES]となります。­(a)~(c)と同じです。

機構(a)で求めたように[ES]の濃度変化は以下の式になります。

(a)のときと同じことから、定常状態近似により導かれる[ES]はKMを用いて(a)と同じになります。

(b)拮抗阻害で登場した解離定数Kと(c)不拮抗阻害で登場した解離定数Ki­iを用います。

ここで存在するすべての酵素の濃度を[E0]とすると、今回は[E0]が以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。

Lineweaver-Burkプロットで直線のグラフを得る

(a)~(d)で求めたPの生成速度の式は縦軸を1/v0とし、横軸を1/[S]とすると直線のグラフが得られます。阻害剤濃度[I]を変えることにより、どのような阻害が起きているか判断をすることが可能なこともあるので有用でしょう。

(a) 阻害剤なしのLineweaver-Burkプロット

従って(a)阻害剤なしのLineweaver-Burkプロットは以下になります。

 

(b) 拮抗阻害のLineweaver-Burkプロット

従って(b)拮抗阻害のLineweaver-Burkプロットは以下になります。

阻害剤濃度[I]を増加させると1/[S]の係数が大きくなる、つまり直線の傾きは大きくなりグラフの矢印の向きに直線は変化します。一方切片は[I]によらないので、直線は切片で交わります。

(c) 不拮抗阻害のLineweaver-Burkプロット

従って(c)不拮抗阻害のLineweaver-Burkプロットは以下になります。

阻害剤濃度[I]を増加させると切片が大きくなりグラフの矢印の向きに直線は変化します。一方、直線の傾きは[I]に寄らないので、直線は平行になります。

(d) 拮抗阻害+不拮抗阻害のLineweaver-Burkプロット(Ki Kiiのとき)

今回はKi Kiiのときのグラフにしたいと思います。1/v0に0を代入してみます。

これは[I]の値に寄らず、直線は横軸の-1/KMで交わることを表します。

従って(d) Ki Kiiのときの拮抗阻害+不拮抗阻害のLineweaver-Burkプロットは以下になります。

阻害剤濃度[I]を増加させると切片、傾きともに大きくなり、グラフの矢印の向きに直線は変化します。今回はKi Kiiを考えているので、[I]の値に寄らず直線は横軸の-1/KMで交わります1

今回取り上げた(a)~(d)までのグラフを並べてみると違いがよく分かります。

グラフを比べてみると阻害剤濃度[I]を変えることにより直線の変化の仕方が異なるので、どのような阻害が起きているか判断をすることが可能なこともあります1

最後に

今回は拮抗阻害や不拮抗阻害について取り上げましたが、競合的阻害、非競合的阻害、不競合的阻害2などと呼ばれていたり呼び方は様々あるようです。
今回はここまで。

参考文献

  1. 赤路健一, 津田裕子, 林良雄, ベーシック創薬化学, 化学同人, pp. 20-22 (2014)
  2. 長野哲雄, 夏苅英昭, 原博, 創薬化学, 東京化学同人, pp. 72-75 (2004)
  3. 水野哲孝, 山口和也, 堂免一成, 東京大学工学教程 基礎系 化学 物理化学Ⅱ:化学反応論, 丸善出版, pp. 45-46 (2018)
  4. 水野哲孝, 山口和也, 堂免一成, 東京大学工学教程 基礎系 化学 物理化学Ⅱ:化学反応論, 丸善出版, p. 15 (2018)
  5. 野田春彦, 生命科学のための物理化学(第2版), 東京化学同人, pp. 248-250 (1992)
  6. 酵素触媒反応の生成速度を考える-ミカエリス・メンテン機構-

関連書籍

ベーシック創薬化学

ベーシック創薬化学

赤路 健一, 林 良雄, 津田 裕子
¥3,300(as of 11/07 10:26)
Amazon product information
創薬化学

創薬化学

長野哲雄, 夏苅英昭, 原博
¥4,988(as of 11/07 10:26)
Amazon product information

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. 光親和性標識 photoaffinity labeling (P…
  2. コールドスプレーイオン化質量分析法 Cold Spray Ion…
  3. ノーベル化学賞 Nobel Prize in Chemistry…
  4. 生物指向型合成 Biology-Oriented Synthes…
  5. 有機触媒 / Organocatalyst
  6. 活性ベースタンパク質プロファイリング Activity-Base…
  7. 特殊ペプチド Specialty Peptide
  8. A値(A value)

注目情報

ピックアップ記事

  1. 歪んだアルキンへ付加反応の位置選択性を予測する
  2. ピナー反応 Pinner Reaction
  3. Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎や機械学習との違いを解説-
  4. 薬学部6年制の現状と未来
  5. 有機合成化学協会誌2020年2月号:ナノポーラス スケルトン型金属触媒・フッ化アルキル・2,3,6-三置換ピリジン誘導体・ペプチドライゲーション・平面シクロオクタテトラエン・円偏光発光
  6. カチオン中間体の反応に新展開をもたらす新規フロー反応装置の開発
  7. 【著者インタビュー動画あり!】有機化学1000本ノック スペクトル解析編
  8. お前はもう死んでいる:不安定な試薬たち|第4回「有機合成実験テクニック」(リケラボコラボレーション)
  9. 簡単に扱えるボロン酸誘導体の開発 ~小さな構造変化が大きな違いを生んだ~
  10. 有機合成化学協会誌 紹介記事シリーズ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP