[スポンサーリンク]

chemglossary

酵素触媒反応の生成速度を考えるー阻害剤入りー

[スポンサーリンク]

hodaです。以前、酵素触媒反応の生成速度を考える-ミカエリス・メンテン機構-という記事を書きました。以前考えたミカエリス・メンテン機構では、酵素と基質の反応は阻害されないと考えていました。今回は酵素などの働きを阻害する阻害剤を入れ、前回よりも複雑な機構を持つ酵素触媒反応の生成速度を考えたいと思います。

ざっくりミカエリス・メンテン機構とは

ミカエリス・メンテン機構とは最もシンプルな酵素触媒反応の生成速度を求めることができるモデルです。まずは阻害剤がない酵素触媒反応であるミカエリス・メンテン機構から行きましょう。考える機構は以下のモデルです。

(a) 阻害剤なし

E…酵素 (enzyme の頭文字の E)
S…基質 (substrate の頭文字の S)
ES…酵素―基質複合体
P…生成物 (product の頭文字の P)

Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

今回の機構(a)から[ES]の濃度変化は以下の式になります。

KMはミカエリス定数と呼ばれます。

ここで存在するすべての酵素の濃度を[E0]とすると、酵素は酵素単独、または複合体を形成しているので[E0]は以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。
ミカエリス・メンテン機構についてしっかり復習したい方は以前の記事をご覧ください。

今回の本題

ミカエリス・メンテン機構では酵素1種類、基質1種類を考えていますが、実際には阻害剤がいる機構もあります。今回は阻害剤と酵素または複合体がくっついたり離れたりする可逆的阻害を行う反応について考えたいと思います。

(b) 拮抗阻害

阻害剤と基質が酵素の同一部分に作用するために競合します1

I…阻害剤

(a)阻害剤なしのときと同様に、Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

よってPの生成速度v0v0 ­= ­k3 [ES]となります。(a)と同じです。

機構(a)で求めたように[ES]の濃度変化は以下の式になります。

(a)のときと同じことから、定常状態近似により導かれる[ES]はKMを用いて(a)と同じになります。

阻害剤・酵素複合体EIの解離定数をKiとすると以下の式で表されます。

ここで存在するすべての酵素の濃度を[E0]とすると、今回は[E0]が以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。

(c) 不拮抗阻害

今回の機構の阻害剤は酵素・基質複合体に作用します1

(a)阻害剤なし、(b)拮抗阻害のときと同様に、Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

よってPの生成速度v0v0 ­= ­k3 [ES]となります。(a)(b)と同じです。

機構(a)で求めたように[ES]の濃度変化は以下の式になります。

(a)のときと同じことから、定常状態近似により導かれる[ES]はKMを用いて(a)と同じになります。

阻害剤と酵素と基質の複合体ESIの解離定数をKiiとすると以下の式で表されます。

ここで存在するすべての酵素の濃度を[E0]とすると、今回は[E0]が以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。

(d) 拮抗阻害+不拮抗阻害

(b)拮抗阻害と(c)不拮抗阻害を組み合わせた機構は以下のようになります1

(a)~(c)のときと同様に、Pの生成速度を求める際には上記モデルの反応のうち特に次の部分を考えます。

よってPの生成速度v0v0 ­= ­k3 [ES]となります。­(a)~(c)と同じです。

機構(a)で求めたように[ES]の濃度変化は以下の式になります。

(a)のときと同じことから、定常状態近似により導かれる[ES]はKMを用いて(a)と同じになります。

(b)拮抗阻害で登場した解離定数Kと(c)不拮抗阻害で登場した解離定数Ki­iを用います。

ここで存在するすべての酵素の濃度を[E0]とすると、今回は[E0]が以下のように表されます。

[ES]が求まったので、v0 ­= ­k3 [ES]の式に代入してPの生成速度v0を求めます。

Pの生成速度v0が求まりました。

Lineweaver-Burkプロットで直線のグラフを得る

(a)~(d)で求めたPの生成速度の式は縦軸を1/v0とし、横軸を1/[S]とすると直線のグラフが得られます。阻害剤濃度[I]を変えることにより、どのような阻害が起きているか判断をすることが可能なこともあるので有用でしょう。

(a) 阻害剤なしのLineweaver-Burkプロット

従って(a)阻害剤なしのLineweaver-Burkプロットは以下になります。

 

(b) 拮抗阻害のLineweaver-Burkプロット

従って(b)拮抗阻害のLineweaver-Burkプロットは以下になります。

阻害剤濃度[I]を増加させると1/[S]の係数が大きくなる、つまり直線の傾きは大きくなりグラフの矢印の向きに直線は変化します。一方切片は[I]によらないので、直線は切片で交わります。

(c) 不拮抗阻害のLineweaver-Burkプロット

従って(c)不拮抗阻害のLineweaver-Burkプロットは以下になります。

阻害剤濃度[I]を増加させると切片が大きくなりグラフの矢印の向きに直線は変化します。一方、直線の傾きは[I]に寄らないので、直線は平行になります。

(d) 拮抗阻害+不拮抗阻害のLineweaver-Burkプロット(Ki Kiiのとき)

今回はKi Kiiのときのグラフにしたいと思います。1/v0に0を代入してみます。

これは[I]の値に寄らず、直線は横軸の-1/KMで交わることを表します。

従って(d) Ki Kiiのときの拮抗阻害+不拮抗阻害のLineweaver-Burkプロットは以下になります。

阻害剤濃度[I]を増加させると切片、傾きともに大きくなり、グラフの矢印の向きに直線は変化します。今回はKi Kiiを考えているので、[I]の値に寄らず直線は横軸の-1/KMで交わります1

今回取り上げた(a)~(d)までのグラフを並べてみると違いがよく分かります。

グラフを比べてみると阻害剤濃度[I]を変えることにより直線の変化の仕方が異なるので、どのような阻害が起きているか判断をすることが可能なこともあります1

最後に

今回は拮抗阻害や不拮抗阻害について取り上げましたが、競合的阻害、非競合的阻害、不競合的阻害2などと呼ばれていたり呼び方は様々あるようです。
今回はここまで。

参考文献

  1. 赤路健一, 津田裕子, 林良雄, ベーシック創薬化学, 化学同人, pp. 20-22 (2014)
  2. 長野哲雄, 夏苅英昭, 原博, 創薬化学, 東京化学同人, pp. 72-75 (2004)
  3. 水野哲孝, 山口和也, 堂免一成, 東京大学工学教程 基礎系 化学 物理化学Ⅱ:化学反応論, 丸善出版, pp. 45-46 (2018)
  4. 水野哲孝, 山口和也, 堂免一成, 東京大学工学教程 基礎系 化学 物理化学Ⅱ:化学反応論, 丸善出版, p. 15 (2018)
  5. 野田春彦, 生命科学のための物理化学(第2版), 東京化学同人, pp. 248-250 (1992)
  6. 酵素触媒反応の生成速度を考える-ミカエリス・メンテン機構-

関連書籍

hoda

投稿者の記事一覧

学部生です。ケモインフォマティクス→触媒

関連記事

  1. 重水素 (Deuterium)
  2. エレクトロクロミズム Electrochromism
  3. 酵素触媒反応の生成速度を考える―ミカエリス・メンテン機構―
  4. 抗体触媒 / Catalytic Antibody
  5. コールドスプレーイオン化質量分析法 Cold Spray Ion…
  6. 研究のための取引用語
  7. GHS(化学品の分類および表示に関する世界調和システム)
  8. 試験管内選択法(SELEX法) / Systematic Evo…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 福山透 Tohru Fukuyama
  2. スルホニルアミノ酸を含むペプチドフォルダマーの創製
  3. FT-IR(赤外分光法)の基礎と高分子材料分析の実際2【終了】
  4. 硫酸エステルの合成 Synthesis of Organosulfate
  5. チアゾリジンチオン
  6. エチレンを離して!
  7. 富士フイルムのインフルエンザ治療薬、エボラ治療に
  8. 1,3-ジオールの不斉非対称化反応による光学活性オキサゾリン誘導体の合成
  9. 高速原子間力顕微鏡による溶解過程の中間状態の発見
  10. 過ぎ去りし器具への鎮魂歌

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

巨大な垂直磁気異方性を示すペロブスカイト酸水素化物の発見 ―水素層と酸素層の協奏効果―

第580回のスポットライトリサーチは京都大学大学院工学研究科物質エネルギー化学専攻 陰山研究室の難波…

2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 ~感覚の世界に化学はどう挑むか~」

人間の幸福感は、五感に依るところが大きい。化学は文明的で健康的な社会を支える物質を継続的に産み出して…

超難溶性ポリマーを水溶化するナノカプセル

第579回のスポットライトリサーチは東京工業大学 化学生命科学研究所 吉沢・澤田研究室の青山 慎治(…

目指せ抗がん剤!光と転位でインドールの(逆)プレニル化

可視光レドックス触媒を用いた、インドール誘導体のジアステレオ選択的な脱芳香族的C3位プレニル化および…

マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?

開催日:2023/11/29 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP