[スポンサーリンク]

化学者のつぶやき

触媒的syn-ジクロロ化反応への挑戦

[スポンサーリンク]

アルケンは求電子剤に対して様々な付加反応を起こします。代表的な例としてノーベル賞反応であるブラウンヒドロホウ素化反応や、シャープレス不斉ジヒドロキシル化反応が挙げられます。このようにアルケンは分子に官能基を導入する際の重要な「足がかり」となります。それらに並んで、古くから知られるアルケンの付加反応としてジハロゲン化反応があります。塩素や臭素などのハロゲン分子を求電子剤としてアルケンをジハロゲン化できます。

この度Nature Chemistry誌に、アルケンのジクロロ化の論文が報告されました。

“Catalytic, stereospecific syn-dichlorination of alkenes”

Cresswell, A. J.; Eey, S. T.-C.; Denmark, S. E. Nature Chem.2015, 7, 146-152. DOI:10.1038/nchem.2141

なにをいまさら?と思う方かもしれませんが、列記とした新反応です。ポイントは論文のタイトルにあるように、アルケンのジクロロ化が「触媒」で進み、かつ「syn-付加で進行する」点です。それでは研究の背景から紹介していきたいと思います。

アルケンのジクロロ化反応

アルケンのジクロロ化は、有機化学の教科書に必ず記載されている初歩的な反応です。特徴として、アルケンに対するハロゲンの付加がantiで進行するという立体特異性を有します。この理由はわかりますよね。アルケンの分極した塩素分子への攻撃、続く生成したカルボカチオンの補足により、図1に示したような橋かけクロロニウムイオン(またはクロリラニウムイオン)が生成します。橋かけクロロニウムイオンにクロロアニオンの求核攻撃がSN2反応で進行するため、ハロゲンがantiで付加した生成物が立体特異的に得られます。

図1-rev2

図1 アルケンのanti-ジクロロ化の反応機構

 

 

塩素化剤としては、古くは塩素ガスが用いられてきましたが、現在では取り扱いが容易なanti-ジクロロ化剤が数多く開発されています[1]。それらanti-ジクロロ化剤は、danicalipin Aやmytilipin Aのような高度にクロロ化されたchlorosulfolipid類の全合成にも適用されています(図2)。このように、アルケンの効率的なジクロロ化反応の開発はこれら天然物を合成する上でも必要不可欠です。

 

図2

図2 アルケンのジクロロ化反応によって合成されたchlorosulpholipid類

 

一方で、syn選択的なジハロゲン化反応は過去に数例しか報告されていません。1970年代に五塩化アンチモンや五塩化モリブデンを用いることでアルケンのsyn-ジクロロ化が報告されています[2]。しかし、これらは強力なルイス酸であるため、官能基をもたないアルケンにしか適用できません。また1980年代、求電子剤としてフェニルセレネニルトリクロリド(PhSeCl3)、クロロ源としてテトラブチルアンモニウムクロリド(Bu4NCl)を用いたアルケンのsyn-選択的ジクロロ化が開発されました(図3)[3]。しかし、依然として適用できるアルケンは官能基をもたないアルケンに限られ、また一般的に毒性が高いことで知られる有機セレン化合物を化学量論量以上用いなければならず、実用性の面で課題が残されていました。

 

図3

図3 PhSeCl3を用いたアルケンのsynジクロロ化

 

そこで米国イリノイ大学のScott E. Denmark教授らは、アルケンのsyn-ジクロロ化反応の実用性の向上を目的として、有機セレン化合物を触媒量に低減できないかと考えました。

触媒的syn-ジクロロ化反応への挑戦

前述したフェニルセレネニルトリクロリドによるアルケンのsyn-ジクロロ化の反応機構を見てみましょう(図4)。まず、フェニルセレネニルトリクロリド(A)に対してアルケンが付加することでセレニウムイオン(セレニラニウムイオン)中間体(B)を形成します。続いてクロロアニオンの求核攻撃によって、クロロ基とセレニル基がanti付加した中間体(C)を生じます。その後セレニル基の脱離を伴った、クロロアニオンの求核置換反応が進行し、ジクロロアルカンのsyn-付加体が得られます。一連の反応後、セレン4価種であるAはセレン2価種であるフェニルセレネニルクロリド(D)へと還元されているのが見て分かると思います。

図4-rev

図4 PhSeCl3を用いたアルケンのsyn-ジクロロ化の反応機構

 

従って系内に酸化剤を添加することでDを酸化し、再びAを再生することが出来れば、触媒量のAでアルケンのsyn付加反応が実現します(図4中の枠内)。

しかしどんな酸化剤でも良いわけではありません。反応系中にはアルケンをはじめとして、酸化剤と反応しやすい分子が多く含まれており、これらと酸化剤が反応すれば触媒反応として進行しません。従ってDのみに選択的な酸化剤を見つけ出すという、針に糸を通すような条件を見出さねばなりません。

ここで、Denmark教授らは2013年にBrederらによって報告されている、触媒量のPhSeSePh(ジフェニルジセレニド)と、酸化剤としてN-フルオロベンゼンスルホンイミド(NFSI)を用いたアルケンのアリル位及びビニル位アミノ化反応[4]に注目しました。本反応ではPhSeSePh触媒の酸化剤として求電子的フッ素化剤、すなわちフルオロカチオンを用いており、NFSIが出発物質であるアルケンや、中間体であるアルキルセレニウム種を侵すことなく、触媒のみを酸化しています。

検討の結果、酸化剤に同じく求電子的フッ素化剤であるN-フルオロピリジニウムテトラフルオロホウ酸塩([PyF+][BF4])を用いることで、触媒反応を見事進行させることに成功し、目的のsyn-ジクロロ体を高収率で与えました(図5)。またトリメチルクロロシラン(Me3SiCl)の添加が、本反応を効率よく進行させる上で必須であると述べています。

 

図6

図5 アルケンの触媒的syn-ジクロロ化の条件検討

 

その理由としてDenmark教授らは、トリクロロメチルシランが[PyF+][BF4]のセレン触媒の酸化によって生じるフルオロアニオンを補足することで、セレン触媒の失活を防いでいるためであると述べています(図6)。またクロロアニオンによる求核置換反応と競合すると考えられるE2脱離反応がかなり抑えられているのも驚きの結果と言えます。

 

図6

図6 トリメチルクロロシランの作用機構

 

また本手法は、アルケンの基質適用範囲が大幅に拡大しています(図7)。分子内にエステル、アミドを持つアルケンに対してもsyn-ジクロロ化は問題なく進行し、さらにヒドロキシ基を有していても本反応を妨げません。不飽和エステルのような電子不足なアルケンが共存する場合は、より電子豊富なアルケンがジクロロ化されるようです。これ以外にも様々なアルケンが適用可能ですので、詳しくは論文を見て頂けたらと思います。

図7

図7 アルケンの基質適用範囲

 

以上、今回はアルケンの触媒的syn-ジクロロ化反応について紹介しました。反応自体は大変シンプルですが、有機セレン化合物を触媒量に低減した点、様々なアルケンを用いることが可能になった点で、有機合成化学的に価値ある反応に仕上がっています。また、触媒を開発する過程での着眼点や考察は、圧巻の一言です。

今後は、未だ達成されていないエナンチオ選択的なアルケンのジクロロ化へと展開を期待したいと思います。

参考文献

  1.  (a) Markó, I. E.; Richardson, P. R.; Bailey, M.; Maguire, A. R.; Coughlan, N. Tetrahedron Lett. 1997, 38, 2339-2342. DOI:10.1016/S0040-4039(97)00309-2(b) Schlama, T.; Gabriel, K.; Gouverneur, V.; Mioskowski, C. Angew. Chem. Int. Ed. Engl. 1997, 36, 2342-2344. DOI:10.1002/anie.199723421 (c) Kamada, Y.; Kitamura, Y.; Tanaka, T.; Yoshimitsu, T. Org. Biomol. Chem. 2013, 11, 1598-1601. DOI:10.1039/C3OB27345H (d) Ren, J.; Tong, R. Org. Biomol. Chem. 2013, 11, 4312-4315. DOI:10.1039/C3OB40670A
  2.  (a) Uemura, S.; Onoe, A.; Okano, M. Bull. Chem. Soc. Jpn. 1974. 47, 692-697. DOI:10.1246/bcsj.47.692 (b) Uemura, S.; Onoe, A.; Okano, M. Bull. Chem. Soc. Jpn. 1974. 47, 3121-3124. DOI:10.1246/bcsj.47.3121
  3. Morella, A. M.; Ward, D. A. Tetrahedron Lett. 1984, 25, 1197-1200. DOI: 10.1016/S0040-4039(01)91559-X
  4. Trenner, J.; Depken, C.; Weber, T.; Breder, A. Angew. Chem. Int. Ed. 2013, 52, 8952–8956. DOI: 10.1002/anie.201303662

外部リンク

 

関連書籍

[amazonjs asin=”3642120725″ locale=”JP” title=”C-X Bond Formation (Topics in Organometallic Chemistry)”]
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 2012年イグノーベル賞発表!
  2. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  3. NMR化学シフト予測機能も!化学徒の便利モバイルアプリ
  4. 剛直な環状ペプチドを与える「オキサゾールグラフト法」
  5. 研究者・技術系ベンチャー向けアクセラレーションプログラムR…
  6. 胃薬のラニチジンに発がん性物質混入のおそれ ~簡易まとめ
  7. ポリマーを進化させる!機能性モノマーの力
  8. 研究助成金及び海外留学補助金募集:公益財団法人アステラス病態代謝…

注目情報

ピックアップ記事

  1. 美麗な分子モデルを描きたい!!
  2. がんをスナイプするフェロセン誘導体
  3. バルビエ・ウィーランド分解 Barbier-Wieland Degradation
  4. ブライアン・コビルカ Brian K. Kobilka
  5. 荘司 長三 Osami Shoji
  6. ギ酸 (formic acid)
  7. 触媒表面に吸着した分子の動きと分子変換過程を可視化~分子の動きが触媒性能に与える影響を解明~
  8. プロドラッグって
  9. 芳香族フッ素化合物の新規汎用合成法
  10. デービーメダル―受賞者一覧

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年2月
 1
2345678
9101112131415
16171819202122
232425262728  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP