[スポンサーリンク]

化学者のつぶやき

剛直な環状ペプチドを与える「オキサゾールグラフト法」

[スポンサーリンク]

トロント大学・Andrei Yudinらは、鎖状ペプチド両端を1,3,4-オキサジアゾール(odz)骨格で連結することで、大環状ペプチドミメティクスを単工程合成可能な手法を開発した。平面性非天然骨格であるodz基は分子内水素結合を安定化し、剛直なターン構造形成を促して大員環配座を固定する。この結果として高い膜透過性を誇るペプチド化合物が得られてくる。

“Oxazole grafts in peptide macrocycles”
Frost, J. R.; Scully, C. C. G.; Yudin, A. K.* Nat. Chem. 2016, 8, 1105. doi:10.1038/nchem.2636

問題設定と解決した点

 大環状ペプチドはそのサイズや構造的複雑度・プロテアーゼ耐性などから、タンパク―タンパク相互作用阻害などの難関医薬標的を狙いうる化合物群として注目を集めている [1]。またペプチド医薬の分子内水素結合モジュレータは極性表面積を減じうるため、膜透過性や医薬特性の改善などが期待できる[2]。

 著者らはN-イソシアニミノ)トリフェニルホスホラン(Pinc試薬, Ph3P=N−N+≡C)[3]とアルデヒドを用いたUgi反応形式を応用することで、温和な条件下にodz基を組み込みつつペプチド環化を行なう反応を開発した。odzは平面性・加水分解耐性・剛直性を有するアミド結合の生物学的等価体[4]として知られるため、高い膜透過性が期待できるペプチドミメティクスの簡便合成法としても価値がある。

技術や手法のキモ

 Pinc試薬はbench-stableであり、求核的なアミノ基とイソシアノ基を同一分子内に持つ。またホスホニウム基がカチオン性なのでカルボン酸アニオンを引きつけ、大環状化に効果的であることも予想される。アルデヒドの部分にも多様性付与が行える。

 著者らが提唱する”amphoteric molecule”(構造内に求電子部位と求核部位を同時保有する分子)概念から活用を発想されているようだ[5]。

主張の有効性検証

①反応条件の同定・生成物の構造決定

 モデルペプチドとしてPro-Gly-Leu-Gly-Phe(PGLGF)を使用し、環化反応を検討。溶媒は各成分の溶解度の都合からCH2Cl2/CH3CN=1/1を選択。混ぜるだけの簡便操作で68%収率にて環化体が得られる。

 二量体・オリゴマー・他の副生成物はほとんど生成しない(LC-MS・1H NMRで確認)。環状ペプチド構造はX線結晶構造解析からも確認。0.1 M程度の高濃度でも環化が優先することから、試薬とのtwitterionic相互作用に起因すると推測される。

②基質一般性の検討

 4~7残基鎖状ペプチドで検討。基質の多くは0.1M濃度で溶けないので、その場合は25 mM・50にて実施。

 環化に有効とされるプロリン残基がなくとも進行する。環化の難しい4残基ペプチドにも使える。サルコシン(Sar: N-Me-glycine)含有ペプチドにも適用可能。側鎖ミミックとしてのアルデヒド成分も変更可能。

③分子内水素結合特性の評価

 アミドプロトンの温度-化学シフト係数(Tcoeff)を温度可変NMRで追跡し、分子内水素結合の存在を見積もっている[6]。

 odz環化[PGLGF]ではGly2-NHとPhe5-NHの間で水素結合が形成されていること、単一配座で存在することが示唆される。アルデヒド根元の不斉点が異なるジアステレオマー同士でも同様の水素結合パタンを示す。一方で比較用のアミド環化体cyclo[PGLGFA]では、Leu3-NHでのみ水素結合が観測され、複数の配座を取りえる。配列の異なるペプチドでも似た傾向が見られることから、この効果はodz単位に由来するものと考察される。

 プロリンが含まれないodz環化体に関しては、複数の配座混合物として観測される。N末プロリン含有ペプチドで配座が特に強く固定される理由を追跡すべく、NBO解析を行なったところ、プロリン窒素とGly2-NH、odz酸素間での水素結合の存在が示唆された。

④膜透過性の評価

 PAMPA法で評価したところ、大抵のodz環化体は高い膜透過性を示した。一方で比較用であるアミド環化体は、5つのうち4つが膜非透過となった。X線像からアルデヒド由来の側鎖が親水基のマスクとして働くことが推測されたので、アルデヒド側鎖を変えたodz環化[PGLGF]で比較すると、Et基をBn基, iBu基に変更することで膜透過性が向上することが分かった。すなわちアルデヒドの変更によっても、医薬物性の改善が行える。

 極性表面積値(%PSA)の比較を行うと、odz環化体とアミド環化体では大きな差がないことが判明した。すなわち、膜透過性の向上は極性の変化ではなく、odz部位のユニークな水素結合特性・配座効果にあると結論づけられる。

議論すべき点

  • アルデヒドの根本は立体制御が難しそうだが、大抵は単一ジアステレオマーで取れるらしい。理由は不明。
  • 有機溶媒中での反応が想定されているので、親水基を含むペプチドは側鎖保護が必要。
  • Pinc試薬による環化反応機構は、修士過程レベルの大学院生に丁度良い課題と思うので、各自考えて見て欲しい。

次に読むべき論文は?

  • 大環状(ペプチド)医薬の特徴を記した総説[1,2]
  • Twitterionic制御を取り入れた触媒・反応開発研究
  • Yudinらが研究蓄積を持つ”amphoteric molecules”概念に基づく有機合成法[5]

参考文献

  1. Driggers, E. M.; Hale, S. P.; Lee, J.; Terrett, N. K. Nat. Rev. Drug Discov. 2008, 7, 608. doi:10.1038/nrd2590
  2. Bhat, A.; Roberts, L. R.: Dwyer, J. J. Eur. J. Med. Chem. 2015, 94, 471. doi:10.1016/j.ejmech.2014.07.083
  3. [3] (a) Weinberger, B.; Fehlhammer, W. P. Angew. Chem. Int. Ed. 1980, 19, 480. DOI: 10.1002/anie.198004801 (b) Stolzenberg, H.; Weinberger, B.; Fehlhammer,W. P.; Pühlhofer, F. G.; Weiss, R. Eur. J. Inorg. Chem. 2005, 4263. DOI: 10.1002/ejic.200500196 オキサジアゾール合成への適用:(c) Souldozi, A. ; Ramazani, A. Tetrahedron Lett. 2007, 48, 1549. doi:10.1002/ejic.200500196 (d) Ramazani, A.; Rezaei, A. Org. Lett. 2010, 12, 2852. DOI: 10.1021/ol100931q
  4. [4] Borg, S.; Estenne-Bouhtou, G.; Luthman, K.; Gsoeregh, I.; Hesselink, W.; Hacksell, U. J. Org. Chem. 1995, 60, 3112. DOI: 10.1021/jo00115a029
  5. (a) He, Z.; Zajdlik, A.; Yudin, A. K. Acc. Chem. Res. 2014, 47, 1029. doi:10.1021/ar400210c (b) Yudin, A. K. Chem. Heterocycl. Compd. 2012, 48, 191. doi:10.1007/s10593-012-0982-6 (C) Hili, R.; Yudin, A. K. Chem. Eur. J. 2007, 13, 6538. doi:10.1002/chem.200700710
  6. 1H NMR 測定温度の上昇に伴い、4 ppb/K 以下の率でしか化学シフトが変化しない場合、強固な分子内水素結合の存在が示唆される。
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 環状アミンを切ってフッ素をいれる
  2. 第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します…
  3. カルボン酸からハロゲン化合物を不斉合成する
  4. 化学の力で迷路を解く!
  5. 私がなぜケムステスタッフになったのか?
  6. 高専の化学科ってどんなところ? -その 2-
  7. アルケンの実用的ペルフルオロアルキル化反応の開発
  8. (–)-Batrachotoxinin Aの短工程全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. The Sol-Gel Handbook: Synthesis, Characterization and Applications
  2. 春田 正毅 Masatake Haruta
  3. 酸化亜鉛を用い青色ダイオード 東北大開発 コスト減期待
  4. 2009年ノーベル化学賞は誰の手に?
  5. 事故を未然に防ごう~確認しておきたい心構えと対策~
  6. 親水性ひも状分子を疎水性空間に取り込むナノカプセル
  7. AIを搭載した化学物質毒性評価サービス「Chemical Analyzer」の販売を開始
  8. アニオンUV硬化に有用な光塩基発生剤(PBG)
  9. ディークマン縮合 Dieckmann Condensation
  10. リンドラー還元 Lindlar Reduction

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

湿度によって色が変わる分子性多孔質結晶を発見

第277回のスポットライトリサーチは、筑波大学 数理物質系 山本研究室 助教の山岸 洋(やまぎし ひ…

【書籍】機器分析ハンドブック1 有機・分光分析編

kindle版↓概要はじめて機器を使う学生にもわかるよう,代表的な分析機器の…

第46回「趣味が高じて化学者に」谷野圭持教授

第46回目の研究者インタビューです。今回のインタビューは第10回目のケムステVシンポ講演者の一人であ…

【山口代表も登壇!!】10/19-11/18ケミカルマテリアルJapan2020-ONLINE-

「ケミカルマテリアルJapan2020-ONLINEー(主催:株式会社化学工業日報社)」は、未来に向…

「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~ 2

Tshozoです。前回の続き、②リチウムイオン電池についてです。なおこの関連の技術は進化が非常に早く…

炊きたてご飯の香り成分測定成功、米化学誌に発表 福井大学と福井県農業試験場

 福井大学と福井県農業試験場は、これまで難しいとされていた炊きたてご飯の香り成分の測定に成功したと米…

化学者のためのエレクトロニクス講座~配線技術の変遷編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

基礎材料科学

概要本書では,材料科学を「マルチスケールにわたる物質の階層性を理解し,その特性を人々の生活に…

Chem-Station Twitter

PAGE TOP