[スポンサーリンク]

化学者のつぶやき

芳香族フッ素化合物の新規汎用合成法

[スポンサーリンク]


先日、Tobias Ritter助教授の講演を聴いてきました。彼は2006年にハーバード大学でPrincipal Investigator (PI)として働き始めたばかりの、新鋭気鋭の若手研究者です。

今回は主軸テーマとして研究を進めている「芳香族フッ素化合物の汎用合成法」について講演されていました。

背景・研究内容

「ベンゼン環にフッ素原子を自在導入可能な反応」というのは、意外にもごく限られた報告例しかありません。にもかかわらずその合成法には、大きな需要が存在しています。

とくに医薬品の場合、フッ素導入が効能・代謝を劇的に改善することも珍しくありません。実に市販医薬品の30%は、フッ素を含む化合物でもあります。

このような背景の中、彼はパラジウム・銀をメディエータとして用いる、芳香族スズ・ケイ素・ホウ素化合物のフッ素置換反応を開発しました。大変マイルドな条件で行え、多数の官能基を持っていても問題なく使えるとのこと。[1-4]

ritter_3.gif
ritter_2.gif
ritter_1.gif 使い勝手の良い反応だとは思いますが、スズ・ホウ素に変換してからフッ素に変えるという”ひと手間”が必要だったり、銀やパラジウムといった貴金属を過剰に必要としてもいます。実用重視な色眼鏡で眺めてしまうと、そこまで価値ある反応になんだか見えてこない・・・失礼ながら筆者自身、アブストラクトを眺めて感じた第一印象は、「ハーバードという場でやらなくても良い研究じゃないかな?」ということでした。

しかしプレゼンを聴いたあと、その表面的に過ぎた認識は、180度改められることになります。

研究とはChallengeを克服し、”新たな未来像”を示すこと

彼のプレゼンの基本骨格は、以下のとおりでした。

① 誰もが難しいと認める「challenging point」を提示
(他分野の人でも理解できる「根源的な問題提起」であればなお良い)

② 自分の結果こそが、「challenging point」を解決する合理的アプローチだとアピール
(「他の既存法・アプローチでは出来ない」ということが言えればなお良い)

③ その帰結としてもたらされる未来像、新たな研究フィールドを示す

「オリジナリティとインパクトに富むプレゼン」の王道とも言えるストーリー骨格です。

とはいえ②の素材として使えるのは、手元にある結果の分だけで、現実的に動かしようがありません。すなわち①のchallenging pointの切り取り方こそが、プレゼンアピールの明暗を分けることになります。

彼はこの点で、実に秀逸であり、以下の2つの「challenge」を掲げて、解決法を提案していました。

フッ素合成化学の二大Challenge

Challenge 1 :Late-Stage Fluorination

言葉通り、「合成終盤にフッ素を導入できる合成ルート」の提案です。

含フッ素化合物合成では、「フッ素を含む原料から出発して、最終生成物までもっていく」という経路しか現状取りようがありません。フッ素-炭素結合が極めて安定であり、また汎用合成法も少ないため、そうせざるを得ないのです。

今回示した穏和なフッ素化条件があれば、そういった縛りを超えられるという話。

単に「変わったことができます」で終止しないため、いくつもの応用事例を提案しており、結果として大変効果的なアピールに成功していました。以下はその具体例。

例) 18Fを用いるPETトレーサーへの応用
18Fは陽電子を放出して崩壊するためPETで体内動態をことが出来ます。医薬品に導入したもの(たとえば下記の18F-イレッサなど)を使用できれば、医薬開発に重要な情報を得ることができます。

18F_iressa

しかし、18Fの半減期はわずかに2時間であり、18 FをPET用途に使うためには、合成終盤で導入する反応こそが必要不可欠になります。

つまりは「Late-Stage Fluorinationだけがこの問題を解決しうる」というアピールです。18Fは通常元素と比較にならないほど高価なので、パラジウムや銀を当量使おうが問題にならないだろう、とも。なるほど上手いこと言うもんです。

例) 生理活性物質の改良

先にも述べましたが、医薬化学においてフッ素導入は大変効果的です。

小さな人工分子医薬だけでなく、複雑な天然物にまでそれが可能となれば、相当に魅力的です。

Late-Stage Fluorinationは、フッ素修飾型天然物の合成をも可能とします。そのデモンストレーションとして彼は、フッ素導入型ストリキニーネや、フッ素導入型タキソールを実際に作っていました。

F-strychinine
この構造が提示されて、自前で作ることを仮に想像してみてください。炭素-フッ素結合の独特な特性ゆえ、合成ルートはイチから検討しなおしとなるでしょう。
それゆえ誘導体化の候補としては、実のところ、発想すらされない化合物の一つではないでしょうか。生理活性の結果が読めないフッ素置換化合物一つを数年かけて作るのは、あまりに非現実的ですから。

つまり「Late-Satage Fluorination法があれば、このような化合物群をも医薬候補にできる」というわけです。大変に意義深い提案ですね。

Challenge 2 : Umpolung of Fluoride Anion

先述のフッ素化条件では、F+等価体が必要になります。
PETトレーサー合成への応用を考えた場合、18F+等価体を用意しなくてはならない・・・しかしそれは現実的にほぼ不可能です。18Fのソースとしては、Fしか入手出来ません。

「ならば極性転換を行えばいい」

・・・これはアイデアとして理解出来なくもありません。しかし忘れてならないのは、「フッ素は全ての元素中、もっとも電気陰性」ということです。そんなものの極性転換は、ちょっとやそっとどころの話ではありません。

しかし彼は、自身の一連のパラジウムケミストリー研究が、その解決に対する足がかりになると述べていました。すなわち高原子価パラジウム(IV)クロライドをフッ素置換し、別のアリールパラジウム種と反応させるとフッ素化が行えるそうです。

ritter_5.gif
これはすなわち「フッ素アニオンをカチオン等価体として使っている=極性転換」も同然。「世界で一番高価なフッ素化剤だ」と冗談交じりに述べていましたが、そんなものは改良が進めば瑣末な問題となるでしょう。

おわりに

既に示したように、開発された反応自体はまったくシンプルそのものです。

凡百の合成化学者ならば、『医薬品合成に有用なフッ素化反応を開発できました、いろんな基質に使えて汎用性も高く、操作も簡単で収率も良いです、すごいでしょ』といったことを言うのが関の山でしょう。

しかし彼の場合、未踏の世界をきっちり示したうえで、「自分の仕事が新たなフィールドを切り開く力を持つ」と訴えかけるプレゼンスタイルを徹底しており、結果的に大変エキサイティングな講演となっていました。流石に若くしてハーバードの独立ポジションをとるだけのことはあるな、というのが偽らざる感想です。手元にある結果は同じでも、プレゼン如何で雲泥の差が出る――それを改めて実感出来た良い機会でした。

若手化学者にも、本当に凄い人がいますね。アメリカはそういう層が厚く、また身近でもあります。まったく刺激の多い環境で得ることも学ぶことも多い。日々勉強になってばかりです。

関連文献

[1] Furuya, T,; Kaiser, H. M.; Ritter, T. Angew. Chem. Int. Ed. 2008, 47, 5993. doi:10.1002/anie.200802164
[2] Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008, 130, 10060. DOI: 10.1021/ja803187x
[3] Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662. DOI: 10.1021/ja8086664
[4] Furuya, T.; Ritter, T. Org. Lett. 2009, 11, 2860. DOI: 10.1021/ol901113t

関連リンク

The Ritter Group ハーバード大学・リッター研のHP

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アマゾン・アレクサは化学者になれるか
  2. 効率的に新薬を生み出すLate-Stage誘導体化反応の開発
  3. 化学者のためのエレクトロニクス講座~半導体の歴史編~
  4. 第24回ACSグリーンケミストリー&エンジニアリング会…
  5. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン…
  6. 複雑にインターロックした自己集合体の形成機構の解明
  7. 近況報告Part V
  8. アステラス病態代謝研究会 2018年度助成募集

注目情報

ピックアップ記事

  1. 文具に凝るといふことを化学者もしてみむとてするなり⑭: 液タブ XP-PEN Artist 13.3 Proの巻
  2. 高温焼成&乾燥プロセスの課題を解決! マイクロ波がもたらす脱炭素化と品質向上
  3. Cleavage of Carbon-Carbon Single Bonds by Transition Metals
  4. 近況報告PartI
  5. 5配位ケイ素間の結合
  6. 私達の時間スケールでみても、ガラスは固体ではなかった − 7年前に分からなかった問題を解決 −
  7. 研究動画投稿で5000ユーロゲット?「Science in Shorts」
  8. タミフルの新規合成法・その2
  9. ラウリマライドの全合成
  10. マイクロプラスチックの諸問題

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

電子一つで結合!炭素の新たな結合を実現

第627回のスポットライトリサーチは、北海道大有機化学第一研究室(鈴木孝紀教授、石垣侑祐准教授)で行…

柔軟な姿勢が成功を引き寄せた50代技術者の初転職。現職と同等の待遇を維持した確かなサポート

50代での転職に不安を感じる方も多いかもしれません。しかし、長年にわたり築き上げてきた専門性は大きな…

SNS予想で盛り上がれ!2024年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 2024…

「理研シンポジウム 第三回冷却分子・精密分光シンポジウム」を聴講してみた

bergです。この度は2024年8月30日(金)~31日(土)に電気通信大学とオンラインにて開催され…

【書籍】Pythonで動かして始める量子化学計算

概要PythonとPsi4を用いて量子化学計算の基本を学べる,初学者向けの入門書。(引用:コ…

ケムステ版・ノーベル化学賞候補者リスト【2024年版】

今年もノーベル賞シーズンが近づいてきました!各媒体からかき集めた情報を元に、「未…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP