[スポンサーリンク]

化学者のつぶやき

芳香族フッ素化合物の新規汎用合成法

[スポンサーリンク]


先日、Tobias Ritter助教授の講演を聴いてきました。彼は2006年にハーバード大学でPrincipal Investigator (PI)として働き始めたばかりの、新鋭気鋭の若手研究者です。

今回は主軸テーマとして研究を進めている「芳香族フッ素化合物の汎用合成法」について講演されていました。

背景・研究内容

「ベンゼン環にフッ素原子を自在導入可能な反応」というのは、意外にもごく限られた報告例しかありません。にもかかわらずその合成法には、大きな需要が存在しています。

とくに医薬品の場合、フッ素導入が効能・代謝を劇的に改善することも珍しくありません。実に市販医薬品の30%は、フッ素を含む化合物でもあります。

このような背景の中、彼はパラジウム・銀をメディエータとして用いる、芳香族スズ・ケイ素・ホウ素化合物のフッ素置換反応を開発しました。大変マイルドな条件で行え、多数の官能基を持っていても問題なく使えるとのこと。[1-4]

ritter_3.gif
ritter_2.gif
ritter_1.gif 使い勝手の良い反応だとは思いますが、スズ・ホウ素に変換してからフッ素に変えるという”ひと手間”が必要だったり、銀やパラジウムといった貴金属を過剰に必要としてもいます。実用重視な色眼鏡で眺めてしまうと、そこまで価値ある反応になんだか見えてこない・・・失礼ながら筆者自身、アブストラクトを眺めて感じた第一印象は、「ハーバードという場でやらなくても良い研究じゃないかな?」ということでした。

しかしプレゼンを聴いたあと、その表面的に過ぎた認識は、180度改められることになります。

研究とはChallengeを克服し、”新たな未来像”を示すこと

彼のプレゼンの基本骨格は、以下のとおりでした。

① 誰もが難しいと認める「challenging point」を提示
(他分野の人でも理解できる「根源的な問題提起」であればなお良い)

② 自分の結果こそが、「challenging point」を解決する合理的アプローチだとアピール
(「他の既存法・アプローチでは出来ない」ということが言えればなお良い)

③ その帰結としてもたらされる未来像、新たな研究フィールドを示す

「オリジナリティとインパクトに富むプレゼン」の王道とも言えるストーリー骨格です。

とはいえ②の素材として使えるのは、手元にある結果の分だけで、現実的に動かしようがありません。すなわち①のchallenging pointの切り取り方こそが、プレゼンアピールの明暗を分けることになります。

彼はこの点で、実に秀逸であり、以下の2つの「challenge」を掲げて、解決法を提案していました。

フッ素合成化学の二大Challenge

Challenge 1 :Late-Stage Fluorination

言葉通り、「合成終盤にフッ素を導入できる合成ルート」の提案です。

含フッ素化合物合成では、「フッ素を含む原料から出発して、最終生成物までもっていく」という経路しか現状取りようがありません。フッ素-炭素結合が極めて安定であり、また汎用合成法も少ないため、そうせざるを得ないのです。

今回示した穏和なフッ素化条件があれば、そういった縛りを超えられるという話。

単に「変わったことができます」で終止しないため、いくつもの応用事例を提案しており、結果として大変効果的なアピールに成功していました。以下はその具体例。

例) 18Fを用いるPETトレーサーへの応用
18Fは陽電子を放出して崩壊するためPETで体内動態をことが出来ます。医薬品に導入したもの(たとえば下記の18F-イレッサなど)を使用できれば、医薬開発に重要な情報を得ることができます。

18F_iressa

しかし、18Fの半減期はわずかに2時間であり、18 FをPET用途に使うためには、合成終盤で導入する反応こそが必要不可欠になります。

つまりは「Late-Stage Fluorinationだけがこの問題を解決しうる」というアピールです。18Fは通常元素と比較にならないほど高価なので、パラジウムや銀を当量使おうが問題にならないだろう、とも。なるほど上手いこと言うもんです。

例) 生理活性物質の改良

先にも述べましたが、医薬化学においてフッ素導入は大変効果的です。

小さな人工分子医薬だけでなく、複雑な天然物にまでそれが可能となれば、相当に魅力的です。

Late-Stage Fluorinationは、フッ素修飾型天然物の合成をも可能とします。そのデモンストレーションとして彼は、フッ素導入型ストリキニーネや、フッ素導入型タキソールを実際に作っていました。

F-strychinine
この構造が提示されて、自前で作ることを仮に想像してみてください。炭素-フッ素結合の独特な特性ゆえ、合成ルートはイチから検討しなおしとなるでしょう。
それゆえ誘導体化の候補としては、実のところ、発想すらされない化合物の一つではないでしょうか。生理活性の結果が読めないフッ素置換化合物一つを数年かけて作るのは、あまりに非現実的ですから。

つまり「Late-Satage Fluorination法があれば、このような化合物群をも医薬候補にできる」というわけです。大変に意義深い提案ですね。

Challenge 2 : Umpolung of Fluoride Anion

先述のフッ素化条件では、F+等価体が必要になります。
PETトレーサー合成への応用を考えた場合、18F+等価体を用意しなくてはならない・・・しかしそれは現実的にほぼ不可能です。18Fのソースとしては、Fしか入手出来ません。

「ならば極性転換を行えばいい」

・・・これはアイデアとして理解出来なくもありません。しかし忘れてならないのは、「フッ素は全ての元素中、もっとも電気陰性」ということです。そんなものの極性転換は、ちょっとやそっとどころの話ではありません。

しかし彼は、自身の一連のパラジウムケミストリー研究が、その解決に対する足がかりになると述べていました。すなわち高原子価パラジウム(IV)クロライドをフッ素置換し、別のアリールパラジウム種と反応させるとフッ素化が行えるそうです。

ritter_5.gif
これはすなわち「フッ素アニオンをカチオン等価体として使っている=極性転換」も同然。「世界で一番高価なフッ素化剤だ」と冗談交じりに述べていましたが、そんなものは改良が進めば瑣末な問題となるでしょう。

おわりに

既に示したように、開発された反応自体はまったくシンプルそのものです。

凡百の合成化学者ならば、『医薬品合成に有用なフッ素化反応を開発できました、いろんな基質に使えて汎用性も高く、操作も簡単で収率も良いです、すごいでしょ』といったことを言うのが関の山でしょう。

しかし彼の場合、未踏の世界をきっちり示したうえで、「自分の仕事が新たなフィールドを切り開く力を持つ」と訴えかけるプレゼンスタイルを徹底しており、結果的に大変エキサイティングな講演となっていました。流石に若くしてハーバードの独立ポジションをとるだけのことはあるな、というのが偽らざる感想です。手元にある結果は同じでも、プレゼン如何で雲泥の差が出る――それを改めて実感出来た良い機会でした。

若手化学者にも、本当に凄い人がいますね。アメリカはそういう層が厚く、また身近でもあります。まったく刺激の多い環境で得ることも学ぶことも多い。日々勉強になってばかりです。

関連文献

[1] Furuya, T,; Kaiser, H. M.; Ritter, T. Angew. Chem. Int. Ed. 2008, 47, 5993. doi:10.1002/anie.200802164
[2] Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008, 130, 10060. DOI: 10.1021/ja803187x
[3] Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662. DOI: 10.1021/ja8086664
[4] Furuya, T.; Ritter, T. Org. Lett. 2009, 11, 2860. DOI: 10.1021/ol901113t

関連リンク

The Ritter Group ハーバード大学・リッター研のHP

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. iPhone/iPod Touchで使える化学アプリ-ケーション…
  2. 有機反応を俯瞰する ー縮合反応
  3. 有機合成化学 vs. 合成生物学 ― 将来の「薬作り」を席巻する…
  4. 日本ビュッヒ「Cartridger」:カラムを均一・高効率で作成…
  5. 有機合成化学協会誌2019年9月号:炭素–水素結合ケイ素化・脱フ…
  6. 酵素の真実!?
  7. エマルジョンラジカル重合によるトポロジカル共重合体の実用的合成
  8. 水素社会~アンモニアボラン~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. セレノネイン selenoneine
  2. イオン性置換基を有するホスホール化合物の発光特性
  3. 有望な若手研究者を発掘ー研究者探索サービス「JDream Expert Finder」
  4. アジサイから薬ができる
  5. 化学系スタートアップ2社の代表が語る、事業の未来〜業界の可能性と働き方のリアルとは〜
  6. 長谷川 靖哉 Yasuchika Hasegawa
  7. アメリカ化学留学 ”実践編 ー英会話の勉強ー”!
  8. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ③
  9. 2016年ケムステ人気記事ランキング
  10. 「社会との関係を見直せ」とはどういうことか

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP