[スポンサーリンク]

スポットライトリサーチ

火力発電所排気ガスや空気から尿素誘導体の直接合成に成功

[スポンサーリンク]

 

第339回のスポットライトリサーチは、産業技術総合研究所 触媒化学融合研究センター竹内勝彦 博士にお願いしました。

ご存じ地球温暖化の原因物質ともされる二酸化炭素(CO2)。回収し、資源として再利用できる有用な手法は人類社会の持続化に貢献できる技術となります。しかしながらCO2の低反応性と含有濃度の低さから、高効率での実施にはいまだハードルがあります。今回の成果では、新たに開発した触媒系を用いて、空気・排ガスなどに含まれる微量のCO2を捕捉し、有用物質へと変換できる方法論を報告しています。Communications Chemistry誌 原著論文およびプレスリリースに公開されています。

“One-pot catalytic synthesis of urea derivatives from alkyl ammonium carbamates using low concentrations of CO2
Koizumi, H.; Takeuchi, K.*; Matsumoto, K.; Fukaya, N.; Sato, K.; Uchida, M.; Matsumoto, S.; Hamura, S.; Choi, J.-C.* Commun. Chem. 2021, 4, 66. doi:10.1038/s42004-021-00505-2

それでは今回も現場からのインタビューをどうぞ。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

排気ガスや空気などに含まれるCO2から、直接的に尿素誘導体を合成する技術を開発しました。具体的には、石炭火力発電所排気ガス相当の低濃度・低品質CO2含有ガス(15 vol%, CO, SOx, NOx含有)や空気中の極低濃度なCO2(0.04 vol%)にアミンを作用させてカルバミン酸塩に変換した後、チタン錯体などの触媒と加熱することで、エチレンウレアなどの尿素誘導体を得ることに成功しました。合成可能な尿素誘導体は、塗料や樹脂、溶媒、医薬品原料として有用な化学品です。本技術はこれまで直接利用が難しかった低濃度・低品質のCO2を、濃縮・圧縮・精製といったコストやエネルギーが必要な工程を経ずに有用化学品に効率よく変換できるため、地球温暖化の原因とされるCO2の排出量削減への貢献が期待されます。また、本研究は東ソー株式会社との共同研究案件でもあり、実際の火力発電所排気ガスを用いた検証と工業スケールでの尿素誘導体合成反応の実用化を目指して研究を進めています。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

実は、尿素誘導体の合成は狙って見つけた反応ではありませんでした。もともとは別の有用化学品の合成を狙って反応開発を進めていたのですが、尿素誘導体がどうしても副生してしまい、困っていました。しかし、尿素誘導体の生成を減らすために文献調査を行っている過程で、尿素誘導体も有用化学品であることに気付き、逆に生成量を増やすことを考え始めました。その後、ポスドクの小泉博基さん(東工大・石谷研出身)が私の研究プロジェクトに参画し、カルバミン酸塩から尿素誘導体を効率よく得ることに適した触媒を探索してくれた結果、本成果を発表するに至りました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

一番苦労したのは、論文の査読結果が返ってきた際に、反応をワンポットで行うことと不純物を含有する実排ガスを使用することが採択の条件とされたことです。ワンポット反応は反応系の大幅改良が必要であり、実排ガスは企業秘密が含まれるため論文での使用が困難でした。しかし、ワンポット反応については、ポスドクの小泉さんと二人三脚で反応系の設計を見直すことで攻略に成功しました。そして、実排ガスの使用については、石炭火力発電所排気ガスの成分を報告している文献を探し出し、ガス販売会社にそれを再現してもらうことで乗り越えることができました。

Q4. 将来は化学とどう関わっていきたいですか?

産総研では「世界に先駆けた社会課題の解決と経済成長・産業競争力の強化に貢献するイノベーションの創出」をミッションとして掲げています。私は産総研の研究員に着任する前は京都大学の化学研究所で助教を4年半ほど勤めており、遷移金属錯体化学や典型元素化学に関係した非常に基礎的な化学に携わっていました。一方、産総研に着任後すぐに企業との共同研究に携わり、CO2排出量削減という社会課題の解決を目的とした反応開発に取り組むこととなりました。初めは、企業の求める反応条件の厳しさなど実用化を目指した反応開発の難しさに戸惑うこともありましたが、研究に取り組んでいるうちに、これまで私が培ってきた基礎的な化学の知識・技術によってこれらの問題を解決できることがわかってきました。これを踏まえ、大学教員として培ってきた基礎化学的な知識・技術を活かして、産総研の目指す社会課題の解決を目指したいと思います。そして将来的には、大学・企業の研究者を巻き込んで、大学・企業のどちらかだけでは実現できないような、大きな社会課題の解決に取り組んでいきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

産総研は経産省管轄の国立研究開発法人で、大学や文科省管轄の国立研究開発法人である理研や物材研などと比べるとおかたい印象で、研究テーマも自由度が低いように思う人も多いかもしれません。しかし、私の所属する産総研の触媒化学融合研究センターでは、社会課題の解決に繋がるならば、学術的な基礎研究から社会実装を志向した応用研究まで、幅広い研究について比較的自由に取り組むことができる環境にあります。私も一つのテーマに絞るのではなく、固定化触媒の開発やバイオマス資源利用反応の開発など、今まで関わっていなかった分野の研究にも携わっています。また、私を含め元大学教員の研究者が多いのも特徴で、学術的にも高いレベルで研究ディスカッションができる環境にあります。博士課程の学生さんはもちろん、進路に悩む若手研究者の方の就職先の一つに当センターがなり得ることを知っていただければ幸いです。
また、この研究成果は「NEDO先導研究プログラム/未踏チャレンジ2050」の委託業務として、共同提案者である東ソー株式会社との連携によって得られたものです。この場を借りて関係者の皆様に厚く御礼申し上げます。

研究者の略歴

名前:竹内 勝彦
所属:国立研究開発法人 産業技術総合研究所 触媒化学融合研究センター 触媒固定化設計チーム
研究テーマ:二酸化炭素からの有用化製品合成技術の開発、固定化触媒の開発

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. サイエンスアゴラの魅力を聞く-「iCeMS」水町先生
  2. 5配位ケイ素間の結合
  3. 【速報】2015年ノーベル生理学・医学賞ー医薬品につながる天然物…
  4. ふにふにふわふわ☆マシュマロゲルがスゴい!?
  5. 触媒でヒドロチオ化反応の位置選択性を制御する
  6. 鉄錯体による触媒的窒素固定のおはなし-1
  7. 小さなケイ素酸化物を得る方法
  8. 三次元アクアナノシートの創製! 〜ジャイロイド構造が生み出す高速…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Akzonobelとはどんな会社? 
  2. カプサイシンβ-D-グルコピラノシド : Capsaicin beta-D-Glucopyranoside
  3. みんなおなじみ DMSO が医薬品として承認!
  4. スティーブ・ケント Stephen B. H. Kent
  5. スイスの博士課程ってどうなの?1〜ヨーロッパの博士課程を知る〜
  6. ピリジン-ホウ素ラジカルの合成的応用
  7. ゾル-ゲル変化を自ら繰り返すアメーバのような液体の人工合成
  8. 西田 篤司 Atsushi Nishida
  9. 未解明のテルペン類の生合成経路を理論的に明らかに
  10. 文化勲章にノーベル賞の天野さん・中村さんら7人

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
« 8月   10月 »
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

エキノコックスにかかわる化学物質について

Tshozoです。40年以上前でしょうか、手塚治虫氏の有名な作品「ブラック・ジャック」でこう…

秋田英万 Akita Hidetaka

秋田 英万(あきた ひでたか)は、日本の有機化学者である。千葉大学薬学研究院および東北大学薬学研究院…

香料化学 – におい分子が作るかおりの世界

(さらに…)…

ギ酸ナトリウムでconPETを進化!

塩化アリールのラジカルカップリング反応が開発された。芳香環の電子状態にかかわらず種々の塩化アリールに…

料理と科学のおいしい出会い: 分子調理が食の常識を変える

(さらに…)…

シビれる(T T)アジリジン合成

電気化学的に不活性アルケンと一級アミンをカップリングさせることで、N-アルキルアジリジンが合成された…

mi3 企業研究者のためのMI入門③:避けて通れぬ大学数学!MIの道具として数学を使いこなすための参考書をご紹介

最近よく耳にするデジタル・トランスフォーメーション(DX)やマテリアルズ・インフォマティクス(MI)…

産総研より刺激に応じて自在に剥がせるプライマーが開発される

産業技術総合研究所機能化学研究部門スマート材料グループ 相沢 美帆 研究員は、刺激を加える前には接着…

マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ波化学(株)10月度ウェビナー

10月は当社(マイクロ波化学)の技術あるいは当社の事業に興味がある方、それぞれをテーマにしたウェビナ…

宮田完ニ郎 Miyata Kanjiro

宮田 完ニ郎 (みやた かんじろう) は、日本の有機化学者である。東京大学大学院工学系研究科マテリア…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP