[スポンサーリンク]

化学者のつぶやき

反応中間体の追跡から新反応をみつける

[スポンサーリンク]

従来、反応開発は基質や触媒、反応条件を変えたときの生成物の「収率の変化」を追跡することで行われてきたが、今回、「反応の中間体」を追跡することで新たな反応を見出す画期的手法が考案された。

 

反応開発は一般的に基質の消費量や生成物を追跡することで基質や触媒、反応条件の網羅的なスクリーニングが行われます(Reaction-Based Screening)。

最近、ミュンスター大学のGlorious教授らによって報告されたMechanism-Based Screeningは反応全体でなく、想定する触媒サイクルの一部のみの評価を行い新たな反応を見出し、最適化する手法です。今回はその方法を実践した研究について紹介したいと思います。

“Accelerated Discovery in Photocatalysis using a Mechanism-Based Screening Method”

Hopkinson, M. N.; Gómez Suárez, A.; Teders, M.; Sahoo, B.; Glorius, F.;Angew. Chem. Int. Ed. 2016, 55, 4361. DOI: 10.1002/anie.201600995

 

Mechanism-Based Screeningのコンセプト

例えば化合物Aを触媒によって活性化し、Bを作用させることでCへと変換する反応を想定してみましょう(図1)。本手法では触媒と化合物Aから生じる中間体を追跡することで反応に適用可能な基質の同定を効率的に行うことができます。

 

図1. Mechanism-Based Screeningのコンセプト

図1. Mechanism-Based Screeningのコンセプト

 

Mechanism-Based Screeningの手順

著者らは実際に考案した手法を用いて新規光触媒反応の開発を行いました。光触媒は光の照射によって励起状態となり、触媒と基質との間で一電子移動を起こすことで活性酸素/還元種を生成し、反応を促進させます[1]。触媒による基質の活性化の観察は蛍光スペクトルによって行い、触媒のみの溶液(I0)と触媒と基質の両方を加えた溶液(I)の蛍光スペクトルの強度から以下の式を用いてクエンチ率(F)を算出しました。

2016-05-21_03-07-23

スクリーニングは1 .Quencher discovery、2. Quenching evaluationの2段階で行われています。

 

1.Quencher discovery

触媒は光触媒反応で頻繁に用いられるイリジウム錯体:[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (1)[2]を使い、化合物ライブラリーからランダムに選んだ100化合物のスクリーニングを行いました(図 2)。Fが25以上となるものをヒット化合物としたところ、7つの化合物(Q1Q7)が得られています。

そのなかから新規反応の開発を目指すためクエンチャーとして既知である4つの化合物を除外しました。

また残りの3化合物(Q3, Q6, Q7)の紫外可視吸収スペクトルを測定したところ、Q6はイリジウム錯体1の極大励起スペクトルの波長(420 nm)において高い吸光度を示しました。すなわちクエンチによる蛍光強度の変化ではなく、Q6の励起光の吸収によって高いFの値が得られたことが考えられます。そのためQ6は除外し、最終的に新規クエンチャー候補化合物はQ3Q7の2つとなりました。

図2

図2 Quencher discovery

 

2. Quenching evaluation

続いて得られたベンゾトリアゾールQ3、およびその誘導体を用いてイリジウム錯体1以外の光触媒の検討を行いました(図 3)。ベンゾトリアゾールのN上に電子求引基が存在し、かつイリジウム触媒6を用いた時のみ高いF値を示すことがわかりました。

図3

図3 イリジウム錯体の最適化

 

また、著者らはイリジウム錯体6が高い酸化電位を持ち、N上の電子求引基がベンゾトリアゾールの還元電位を低下させることから本反応はベンゾトリアゾールの一電子還元が起こることを予測しました。一電子還元によってトリアゾール部位が開環したジアゾニウム体となり、続く脱窒素化およびラジカルアニオン部位の水素化によってアニリドが生成します[3]。条件の最適化を行ったところ、ベンゾトリアゾールQ3からイリジウム触媒6、無水安息香酸存在下、NMP溶媒中で光を照射することでアニリドを高収率で得ることに成功しています(図 4)。

 

2016-05-21_03-11-41

図4

 

まとめ

今回著者らは反応機構に着目した新たなスクリーニング法を開発し、新規光触媒反応を見出すことに成功しました。本スクリーニング法は反応中に生じる1つの中間体のみを評価する手法であり、迅速に触媒と基質の最適な組み合わせの同定を可能とします。反応全体の最適条件の決定には、反応ベースのスクリーニングが必須となります。従来法と比較してこの方法を用いた場合、触媒と基質は決定するため、より効率的に行うことができるのではないでしょうか。

 

参考文献・リンク

  1. 可視光酸化還元触媒
  2. Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A., Jr.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712. DOI: 10.1021/cm051312
  3. Katritzky, A. R.; Ji, F.-B.; Fan, W.-Q.; Gallos, J. K.; Greenhill, J. V.; King, R. W. J. Org. Chem. 1992, 57, 190. DOI: 10.1021/jo00027a036

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. bothの使い方
  2. 喜多氏新作小説!『美少女教授・桐島統子の事件研究録』
  3. 官能基「プロパルギル基」導入の道
  4. 女性化学賞と私の歩み【世界化学年 女性化学賞受賞 特別イベント】…
  5. 四国化成ってどんな会社?
  6. オルガネラ選択的な薬物送達法:①細胞膜・核・ミトコンドリアへの送…
  7. 配位子だけじゃない!触媒になるホスフィン
  8. 近傍PCET戦略でアルコキシラジカルを生成する

注目情報

ピックアップ記事

  1. インドの化学ってどうよ
  2. マテリアルズ・インフォマティクス適用のためのテーマ検討の進め方とは?
  3. 2013年(第29回)日本国際賞 受賞記念講演会
  4. 経営統合のJXTGホールディングスが始動
  5. ポンコツ博士の海外奮闘録 〜ポスドク失職・海外オファー編〜
  6. シクロデキストリンの「穴の中」で光るセンサー
  7. 超塩基配位子が助けてくれる!銅触媒による四級炭素の構築
  8. フローマイクロリアクターを活用した多置換アルケンの効率的な合成
  9. 小型質量分析装置expression® CMSを試してみた
  10. アレーン三兄弟をキラルな軸でつなぐ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年5月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP