[スポンサーリンク]

一般的な話題

核酸医薬の物語3「核酸アプタマーとデコイ核酸」

[スポンサーリンク]

GREENk00x.PNG

核酸医薬シリーズのパート3です。タンパク質など標的分子と相互作用して機能そのものを調節するタイプとして、核酸アプタマーデコイ核酸について紹介します。

化学と生物学が交差するとき物語は始まる

  • 目次

核酸医薬の物語1「化学と生物学が交差するとき

核酸医薬の物語2「アンチセンス核酸とRNA干渉薬

核酸医薬の物語3「核酸アプタマーとデコイ核酸」(本記事)  

化学と生物学が交差するところまで物語を続けられるように、パート1ではちょっと無味乾燥ですが、核酸自体の化学性質にスポットを当てて、基本となる内容を確認しました。パート1の要点はと言うと……

 ・ウイルスを運び屋とした遺伝子治療と違う

・大量合成できるため製造コストも安い

・自然にあったものを改良して不可能を可能に変える化学の活躍シーンがたくさん

……です。「えぇっ!なんでそうなるの!?」という方は「核酸医薬の物語(1)」をご覧ください。「核酸医薬の物語(2)」と「核酸医薬の物語(3)」は独立しているため、どちらから読んでも大丈夫です。

化学と生物学が交差するとき物語は始まる

 

簡単に言うと、核酸アプタマーとは、抗体医薬の核酸版です。ここでは、黄斑変性症治療薬のペガプタニブ(pegaptanib)を例に解説したいと思います[1]。

ペガブタニブの標的分子は、血管内皮細胞増殖因子(vascular endothelial growth factor; VEGF)と呼ばれるタンパク質です。黄斑変性症 で視力が低下していく理由は、もろい血管がやたらとできて、老廃物が滲み出すからです。ペガブタニブは、血管新生のシグナル分子であるVEGFと結合することで、細胞どうしのやりとりを遮断します。

実は、ペガブタニブと同じくVEGFを標的とした抗体医薬はすでにあります。しかし、これに対して、核酸アプタマーは、製造コストをはじめいくつかの点で、抗体医薬にまさる特長を持ちます。

抗体医薬が免疫細胞から選び出されてできあがる一方、核酸医薬のペガプタニブはどのように作られたのかというと、セレックス(systematic evolution of ligands by exponential enrichment; SELEX)法のような進化工学の手法によります。多様な配列を備えた核酸のライブラリーから、VEGFを特異的に認識する配列としてペガブタニブは選び出されました。配列の情報さえ分かれば、しめたもの。化学合成はラクチンです。

最近になって、人工の核酸アプタマーと同様に、RNAが分子を認識して結合する天然のシステムとして、リボスイッチ(riboswitch)の存在が、ここ数年で明らかにされてきました。リボスイッチのようにRNAが分子を認識する能力には、検討すべき可能性がまだまだ感じられます。

GREEN00383d.PNG

ペガプタニブの構造式 / クリックで拡大

 

  • デコイ核酸

遺伝子の発現を調節する転写因子(transcription factor; TF)と呼ばれるタンパク質は、それぞれに特別な配列を認識して染色体上のDNAと結合する能力を持ちます。デコイ核酸の標的は、この転写因子です。転写因子として機能するNF-κBタンパク質が認識するDNA配列をもとに設計されたデコイ核酸[2]でとくに研究が進んでいます。ここで言う「デコイ(decoy)」とは、おとりのことです。

NF-κBタンパク質は、免疫応答のシグナル伝達ではマスターキーのように重要な役割を持ち、さかんに研究されています。超弩級の知名度は、「転写因子NF-κBを知らない免疫研究者はいない!」と言っても構わないほどです。

NF-κBデコイ核酸の基本戦略は、核ゲノムのDNAではなく、投与した核酸医薬のおとり配列に、NF-κBタンパク質を結合させてしまう、というものです。これによって、免疫に関与する遺伝子の転写調節配列に、NF-κBタンパク質を近寄らせません。免疫応答のシグナル伝達が遮断され、転写因子NF-κB  の標的だった遺伝子はぐっと発現できなくなるため、過剰な炎症を抑え込むことができます。

デコイ核酸は、投与方法でも研究が進んでいます。イオン液体を利用した塗り薬など、興味深い技術が開発中です。

GREEN00384.png

DNAに結合したNF-κBタンパク質の立体構造 / PDB(Protein Data Bank)より構造データを出力

 

  • 紹介したもの
 ・リボスイッチのように原因物質と直接に結合「核酸アプタマー

・転写因子と結合し原因遺伝子産物を調節「デコイ核酸

配列選抜から投与方法まで、人の手だからこそ不可能を可能に変えることのできる化学の挑戦はまだまだ続いていくことでしょう。

 

  • 参考文献
[1] 黄斑変性症の治療のための抗VEGFアプタマー:ペガプタニブ(総説)

“Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease” Nature Reviews Drug Discovery 2006 DOI: 10.1038/nrd1955

[2] 転写因子NF-κBを標的としたデコイ核酸

“In vivo transfection of cis element decoy against nuclear factor-kappa B binding site prevents myocardial infarction” Ryuichi Morishita et al. Nature Medicine 1997 DOI: 10.1038/nm0897-894 

 

  • 関連書籍

 

Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の…
  2. カルボン酸からハロゲン化合物を不斉合成する
  3. 非平衡な外部刺激応答材料を「自律化」する
  4. 触媒的芳香族求核置換反応
  5. 遷移金属を用いない脂肪族C-H結合のホウ素化
  6. 有機反応を俯瞰する ー挿入的 [1,2] 転位
  7. ケミカルバイオロジーとバイオケミストリー
  8. ケムステスタッフ徹底紹介!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 地方の光る化学商社~長瀬産業殿~
  2. ファン・ロイゼン試薬 van Leusen Reagent (TosMIC)
  3. ベン・シェンBen Shen
  4. 芳香族求核置換反応 Nucleophilic Aromatic Substitution
  5. 強塩基条件下でビニルカチオン形成により5員環をつくる
  6. 第14回ケムステVシンポ「スーパー超分子ワールド」を開催します!
  7. 光触媒の力で多置換トリフルオロメチルアルケンを合成
  8. 分子内ラジカル環化 Intramolecular Radical Cyclization
  9. 犬の「肥満治療薬」を認可=米食品医薬品局
  10. ヒドロホルミル化反応 Hydroformylation

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

銀ジャケを狂わせた材料 ~タイヤからの意外な犯人~

Tshozoです。先日ケムステスタッフの方が気になる関連論文を紹介されていましたので書くこととしまし…

富士フイルム和光純薬がケムステVプレミアレクチャーに協賛しました

ケムステVシンポとともにケムステオンライン講演会の両輪をなすケムステVプレミアクチャー(Vプレレク)…

ホウ素でがんをやっつける!

「ホウ素」と言ったときに皆さんは何を思い浮かべますか?鈴木宮浦カップリング、ルイス酸(BF3…

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

Chem-Station Twitter

PAGE TOP