[スポンサーリンク]

一般的な話題

だれが原子を見たか【夏休み企画: 理系学生の読書感想文】

[スポンサーリンク]

企画説明

夏だ!夏らしいことがしたい!そうだ、小中学生のころの心を取り戻し、読書感想文を書こう!ということで、読書感想文を書こうと思いました。最新書籍というわけではありませんが、現代の科学者や科学者の卵にもオススメできる本です。

どんな本?

原子の存否をめぐる長い長い論争の歴史. 単なる歴史的な解説ではなく, ガリレイからアインシュタインまで. それぞれの時代の科学者の探求を自らの実験で再現しながら, 誰が原子の決定的な証拠をみたかを追っていきます. 物理的に思考するとはどういうことかを考える上で大いに示唆を与えられる本です.[1]

どうしてこの本を読んだの?

2018年2月のケムステ記事で紹介された、原子一つを撮影することに成功したニュースがきっかけです。その記事を読んで、「すごい!」と純粋に思いました。が、逆に言えば「今まで科学者は原子を見ることなしに、化学の理論を構築して来たのだろうか」とも思いました。

私は原子や分子を直接見たことはありません。原子を1 つ 1 つ触ったこともありません。分子を匂ったことは…、あるといっていいでしょうか。例えば、焼肉の匂いを嗅ぐと焼肉を思い浮かべることはできますが、「お!ピラジン系の匂いがする![2]」と、その匂いの素の分子構造が頭に浮かぶことはありません 。

そもそも、私が知っている身の回りの物質の分子構造に関する知識も、教科書や本に基づきます。しかし、教科書で学んだだけでは、原子や分子の存在を認めてよい十分な根拠にならない気がします。

そんな私も化学者を目指す身分です。原子や分子の存在を説得できないで、原子や分子を語りたくありません。「誰が原子を見たか」という問いを頭に置き、原子の存在をめぐる歴史をたどろうと思いました。

この本で印象に残った実験は?

ブラウン運動の実験です。なぜならこの本はブラウン運動に始まりブラウン運動に終わるからです。ブラウン運動は、水などの液体に微粒子を浮かべたときにその微粒子が不規則に動くことです。せっかくなので 見てみましょう 。

プルプル震えるというかウネウネ回るというかなんとも形容しがたい動きですね。とにかく不規則なのです。

ブラウン運動と原子の存在はどう関係しているの?

ネタばらしをすると、1900 年代初期に「ブラウン運動の原因は粒子の周りの分子が粒子に不規則に衝突するためだ」と実験により証明されたからです。その証明の過程については、この本で詳しく読んでいただくことにしましょう。

で、誰が原子を見たの?

科学史に登場する有名な科学者は、原子を見ていません。

原子説を唱えたドルトンは原子を見ていません。元素周期表を考案したメンデレーエフも原子も見ていません。ブラウン運動を理論的に説明したアインシュタインも原子を見ていません。

現代になって、科学者は固体表面上の原子 1 つ分の凹凸の差を見分けることができるようになりました[3]

この本を読んで何がわかった?

過去の科学者は一歩一歩理論を組み立てて実験を繰り返すことで、原子を見ずに原子の存在を示していたことを学びました。逆に言えば目に見えない原子の存在を認める過程は相当に慎重であったことを知りました。このことから、過去の科学者のその真摯な姿勢に改めて敬意を持ちました。

教科書では、「この実験から…ということがわかる」とサラりと書いてありますが、科学の発展はそんなにまっすぐ進んでないようです。

この本は誰にお勧めしたい?

  • 真理を追求することが面白いと感じる中学生や高校生
  • あれ? 私/俺って原子見たことあるっけ…? と思った化学者

中学生はこの本を一度読んだだけでは理解できないかもしれません。特に後半では、分子の運動を数式でモデル化します。そのため、スラスラと読むことは難しいです。しかし、時間をかけて学んだ知識は、その分価値があるでしょう。一方、高校生であれば教科書で登場するお話の裏話を楽しむことができると思います。もちろん大学生以上でも楽しめます。

まとめ

化学の研究は目に見えない原子や分子を扱うからこそ浪漫があるのかもしれません。一方で、化学の考察は化学者の妄想ではいけません。本書を読んで、過去の科学者が真理を追求する真摯な姿勢への敬意を持つと同時に、私も科学の小さな一歩に正しく貢献できるよう頑張ろうと思いました。

関連記事

参考文献

  1. 本の裏表紙から引用 (語尾を常体(…だ/である調) から敬体 (…です/ます調) にしております)
  2. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. 第43章 芳香族ヘテロ館化合物 I: 構造と反応「ウォーレン有機化学 (下)」,  野依良治, 奥山格, 柴﨑正勝, 檜山爲次郎訳, 東京化学同人, 2003, pp 1187–1124.
  3. 具体的には走査プルーブ顕微鏡や原子間力顕微鏡のこと. 大学レベルの物理化学の参考書を参照 (a) Atkins, P.: Paula, J. 第18章 固体表面 「アトキンス物理化学要論 第5版」, 千葉秀昭, 稲葉章訳, 東京化学同人, 2012, pp 412–439. (b) こちらのネット記事もわかりやすいです: academist Journal, 「世界で最も小さいものが見える顕微鏡 -「水のチェーンの構造が明らかに」https://academist-cf.com/journal/?p=3749 (2018年7月30日アクセス).
やぶ

やぶ

投稿者の記事一覧

PhD候補生として固体材料を研究しています。学部レベルの基礎知識の解説から、最先端の論文の解説まで幅広く頑張ります。高専出身。

関連記事

  1. 分析化学科
  2. 窒素固定をめぐって-1
  3. できる研究者の論文生産術―どうすれば『たくさん』書けるのか
  4. 化学反応のクックパッド!? MethodsNow
  5. アラインをパズルのピースのように繋げる!
  6. 第93回日本化学会付設展示会ケムステキャンペーン!Part II…
  7. 【朗報】HGS分子構造模型が入手可能に!
  8. B≡B Triple Bond

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. メチオニン選択的なタンパク質修飾反応
  2. リチウムイオン電池 電解液の開発動向と高機能化
  3. 岩村 秀 Hiizu Iwamura
  4. 三共・第一製薬の完全統合、半年程度前倒しを検討
  5. ペンタシクロアナモキシ酸 pentacycloanamoxic acid
  6. 第5回慶應有機化学若手シンポジウム
  7. XPhos
  8. 植物性油の再加熱によって毒物が発生
  9. エナンチオ選択的ジフルオロアルキルブロミド合成
  10. 未踏の構造に魅せられて―ゲルセモキソニンの全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年8月
« 7月   9月 »
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP