[スポンサーリンク]

化学者のつぶやき

細胞を模倣したコンピューター制御可能なリアクター

[スポンサーリンク]

細胞はナスフラスコのようなガラス容器と同様、一種の微小な反応容器と見做すことができます。近年、生物の細胞を模した空間を微小反応容器として利用した「人工細胞型微小リアクター」の研究が進められています。今回紹介するのは東京工業大学・瀧ノ上グループによる研究です。メッセージもいただいたので最後に併せて紹介したいと思います。

マイクロリアクター

微小なスケールでの化学反応は反応規模だけではなく、試薬を瞬時に混ぜ合わせることができるなど普段多く扱われる反応系とは異なるメリットがあります。MEMS・マイクロ流体デバイスの研究が発展してさまざまな微小反応を利用した実験が可能になってきており、実際に目にした。もしくは扱った経験がある読者もいることでしょう。

すでにさまざまな分野で活用され初めている技術ですが、精度の向上や反応制御など改善点・課題が残っています。精密制御された微小反応系を実現するため、人工細胞型リアクターはひとつの選択肢として注目されています。

細胞は自発的な化学反応によって機能を発揮する、微小なシステムとみなすことができます。細胞内で起こっている現象を理解して再現することで、微小スケールでの合成や分析などさまざまな機能をもったデバイスが作製できると期待されています。

コンピューター制御可能な人工細胞型微小リアクター

瀧ノ上グループによる人工細胞型微小リアクターは、細胞内で起こる「エンドサイトーシス」「エクソサイトーシス」の機能に発想を得て、マイクロ流路を利用して開発されたものです。

流路構造は図の通りシンプルです。流路の途中にくぼみを設置し、液滴(細胞をイメージしたリアクター)を入れておきます。オイルフローに乗せて別の液滴を流し(エンドサイトーシス・エクソサイトーシスをイメージした輸送体)、交流電圧をかけて融合・分裂を起こして中身を一部混合することで、化学反応基質の供給と反応産物の排出を行います。融合・分裂が電気的に起こされるため、化学反応の制御が精密に行えるという特徴があります。輸送体がリアクターと融合・分裂する間隔を調節してpHを周期的に変化させることで、リズム反応の制御も可能であることが示されました。

今後はこのような仕組みを利用した分子ロボットの開発が期待できるそうです。
microreactor_takinoue

 

研究者からのメッセージ

この非平衡型の人工細胞型リアクターのコンピュータ制御の研究はウェットな人工細胞システムの世界とドライな数理・コンピュータの世界を繋ぐもので、生命システムの物理学・化学的な理解を助ける基盤となるとともに、データ駆動型およびモデル駆動型の化学反応制御システムや細胞状態制御システムの構築などを通して,分析/合成化学やバイオメディカルサイエンスへの貢献もできると期待しています。
非平衡型の人工細胞型リアクターに関する着想を得たのは、私が京都大学物理学教室の吉川研一研究室の博士研究員として研究していた頃です。その頃のアイデアはまだ実装方法において曖昧な部分が多かったのですが、その後、東京大学生産技術研究所の竹内昌治研究室の特任助教をしていた時に、細胞サイズの微量な液体を操作・制御できるドロップレットマイクロ流体工学に出会い、具体的な実装方法に関するアイデアが完成しました。独立してから、本研究テーマをさきがけ研究で実施させて頂いたため、研究室内外の多くの協力者のもと研究を進めることができました。
ドロップレットや小胞によって液体をデジタル化して物質輸送や反応を制御するという方法は、マイクロ流体工学だけではなく、実は我々の細胞の中にもたくさん存在します。たとえば、エンドサイトーシス・エキソサイトーシスという小胞の融合・分裂を利用した細胞内外の物質の摂取・排出や、細胞内小器官の間でのタンパク質等の輸送手段である小胞輸送です。分子の単純拡散だけで物質輸送を制御しようとするのは非常に難しいため、細胞膜には能動輸送のための超高機能なタンパク質である膜輸送体(イオンポンプなど)が存在しますが、個々の分子に特化した機能(結合解離定数,チャネルサイズなど)の高度なチューニングが必要になります。細胞はこれに加えて、上記のような小胞ごと輸送するという制御方法を編み出して、物質の性質に大きくは依存しない高度な物質輸送方法を確立しています。小胞を利用した物質輸送方法は、膜輸送体による能動輸送に比べると物質選択性が多少落ちるという欠点はありますが、単純拡散に比べると区画化(カプセル化)されていることによって、物質の濃縮効果、反応のマスキング(反応クロストークの低減)、反応のパラレル化などの様々な大きな利点をもたらします。今回のリアクターはこのような生命システムの高度な小胞制御システムに倣ったものであり、バイオインスパイアード(Bio-inspired)な物理学・化学の研究だと思っています。
このような研究は、物理学・化学といった基礎科学に加え、機械工学・制御工学・情報工学のような様々な工学分野の融合で初めて実施できる広領域融合分野の研究であると思います。今後も様々なバックグラウンドを修めた研究者・学生の方と一緒に研究を進めることができれば良いなと思っております。

東京工業大学 瀧ノ上 正浩

文献

  1. “Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system”, Haruka Sugiura, Manami Ito, Tomoya Okuaki, Yoshihito Mori, Hiroyuki Kitahata, Masahiro Takinoue, Nature Communications 7, 10212 (2016). doi:10.1038/ncomms10212
  2. “A Bacterial Continuous Culture System Based on a Microfluidic Droplet Open Reactor”, Manami Ito, Haruka Sugiura, Shotaro Ayukawa, Daisuke Kiga, Masahiro Takinoue, Analytical Science 32, 61-66 (2016). doi: 10.2116/analsci.32.61
  3. “Fusion and fission control of picoliter-sized microdroplets for changing the solution concentration of microreactors”, Masahiro Takinoue, Hiroaki Onoe, Shoji Takeuchi, Small 6, 2374-2377 (2010). doi: 10.1002/smll.201000945

外部リンク

GEN

投稿者の記事一覧

大学JK->国研研究者。材料作ったり卓上CNCミリングマシンで器具作ったり装置カスタマイズしたり共働ロボットで遊んだりしています。ピース写真付インタビューが化学の高校教科書に掲載されました。

関連記事

  1. NBSでのブロモ化に、酢酸アンモニウムをひとつまみ
  2. 製薬産業の最前線バイオベンチャーを訪ねてみよう! ?シリコンバレ…
  3. 免疫の生化学 (1) 2018年ノーベル医学賞解説
  4. 結晶学分野に女性研究者が多いのは何故か?
  5. カゴ型シルセスキオキサン「ヤヌスキューブ」の合成と構造決定
  6. 生きた細胞内でケイ素と炭素がはじめて結合!
  7. 【速報】2015年ノーベル生理学・医学賞ー医薬品につながる天然物…
  8. 有機化合物のスペクトルデータベース SpectraBase

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ヴィ·ドン Vy M. Dong
  2. シャンカー・バラスブラマニアン Shankar Balasubramanian
  3. タンパクの骨格を改変する、新たなスプライシング機構の発見
  4. 【書評】有機化学のための量子化学計算入門
  5. 三洋化成の新分野への挑戦
  6. ものごとを前に進める集中仕事術「ポモドーロ・テクニック」
  7. 高分子ってよく聞くけど、何がすごいの?
  8. 化学グランプリ 参加者を募集
  9. ChemDrawの使い方【作図編①:反応スキーム】
  10. ウランガラス

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

注目情報

最新記事

【9月開催】第1回 マツモトファインケミカル技術セミナー 有機チタン、ジルコニウムが使用されている世界は?-オルガチックスの用途例紹介-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

超分子ランダム共重合を利用して、二つの”かたち”が調和されたような超分子コポリマーを造り、さらに光反応を利用して別々の”かたち”に分ける

第407回のスポットライトリサーチは、千葉大学大学院 融合理工学府 先進理化学専攻 共生応用化学コー…

セレンディピティ:思いがけない発見・発明のドラマ

hodaです。今回は1993年に刊行され、2022年7月に文庫化された書籍について書いていき…

第29回 ケムステVシンポ「論文を書こう!そして…」を開催します

コロナ禍による規制も少しずつ緩和されてきて、逆にオンライン会議が逆に少し恋しくなっている今日この頃か…

マテリアルズ・インフォマティクス活用検討・テーマ発掘の進め方 -社内促進でつまずやすいポイントや解決策を解説-

開催日:2022/08/24 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

高分子固体電解質をAIで自動設計

第406回のスポットライトリサーチは、早稲田大学 先進理工学部 応用化学科 小柳津・須賀研究室の畠山…

スクショの友 Snagit

スクリーンショット(スクショ)は、手軽に画像や図をコピーすることができ、資料作成などにおいて便利な機…

第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!

こんにちは、今回第28回Vシンポの運営&司会を務めさせていただくMacyです、よろしくお願い…

量子アルゴリズム国際ハッカソンQPARC Challengeで、で京都大学の学生チームが優勝!!

そこかしこで「量子コンピュータ」という言葉を聞くようになった昨今ですが、実際に何がどこまでできるのか…

Nature主催の動画コンペ「Science in Shorts」に応募してみました

以前のケムステ記事で、Springer Nature社が独・メルク社と共同で、動画コンペ「Scien…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP