[スポンサーリンク]

chemglossary

水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の強力ツール~

[スポンサーリンク]

bergです。今回は趣向を変えて、これまでChem-Stationにて紹介されていなさそうな分析手法、水晶振動子マイクロバランス(QCM)にクローズアップしていきます。水晶振動子マイクロバランス(QCM)とは、以前の記事でご紹介した水晶振動子(水晶発振子とも)を利用した分析装置です。ng(ナノグラム)オーダーの微少な質量を検出できることから、表面への吸着現象の解析や、生体高分子(タンパク質など)の検出にも用いられます。表面現象の分析手法には、他にもエリプソメトリー、表面プラズモン共鳴(SPR)分光法、マルチパラメトリック表面プラズモン共鳴、二重偏光干渉法などがありますが、その中でも解析や解釈が比較的容易であることから多用されています。

まずは基本となる水晶振動子の動作原理をおさらいしておきましょう。

水晶振動子とは

圧電体である水晶は、変形に応じて電荷を生じる圧電効果と、電圧に応じて変形する逆圧電効果を示します。これを電極に挟んで適切な回路(発振回路)に接続すると、固有振動数に従って高い精度で安定した正弦波を出力(発振)することが可能です。精密に加工された純水晶ではその誤差がppmオーダーにまで低減できます。なお、水晶の逆圧電効果はピエール・キュリー(ポロニウムPoの発見などで知られるマリー・キュリーの夫)とその兄であるジャック・キュリーによって見出されました。

16MHZ_Crystal

水晶振動子(画像:Wikipedia

なお、水晶振動子の等価回路(素子の内部要素を単純化した回路図)は下図です。コイルとコンデンサに相当する要素を持っていることから、発振回路としてはたらきます。

水晶振動子の等価回路:C0とC1がコンデンサ、L1がコイルに相当します(画像:Wikipedia

 

水晶振動子は天然の水晶を人工的に再結晶して純水晶の結晶を作り、これを正確に切り出すことで製造されています。切り出し方には様々な種類がありますが、かつては「BTカット」など他の切り出し方の水晶も広く利用されていましたが、現在では「ATカット」と呼ばれる切り方を用いるのが一般的になっています。

測定原理

古くから、水晶振動子の発振周波数が用いる水晶の厚さに相関することが知られていましたが、その後水晶振動子の電極上に吸着した物質も周波数に影響を及ぼすことが確認されました。詳細な研究により、吸着によって電極が重くなるほど発振周波数が低下することが明らかになりました。これを応用した分析法がQCMです。

この周波数変化は、以下に示すSauerbreyによく従うことが知られています。

これより、観測したい(単位面積当たりの)吸着質量に対して、出力される周波数変化が線形応答することが見てとれます。

また、右項に基本周波数f0が入っており、基本周波数の高い水晶振動子を用いるほど、そのの2乗に比例して質量検出感度が向上することを示しています。

なお、Δff0に対して大きくなると(>5%)、以下の式で表されるようになります。

 

なんだかいきなりややこしくなりましたが、線形応答が成り立たなくなっていることが見て取れます。すなわち、総合すると感度の高い水晶振動子ほど測定できる範囲が狭まることになります。使用する装置の選定に当たってはこれを考慮する必要があります。基本周波数は装置によってまちまちですが、数~数十MHz程度が一般的です。

当初、QCM法は粘性の高い液体中での測定には適していませんでしたが、ここ数十年の改良によって気相・液相両方で安定した測定が行えるまでになりました。

その結果、溶液中での測定が可能になったことで種々の表面現象の観察や、生体分子の測定など、著しく用途が広がりました。

QCM電極のイメージ(画像:Wikipedia

測定・解析上の注意

QCM法の感度は極めて高く、発振周波数は温度、圧力、折り曲げなどの応力をはじめ、質量以外の要因にも左右されるため、解析を行う上では注意が必要です。

例えば、溶液の粘性の変化や、QCM電極への物質の析出に伴う表面の粗化などによっても共振周波数が影響されます。

ただし、このような場合にはしばしば、等価回路におけるR1の値も同時に変化することから、質量変化との識別は比較的容易とされます。

このほかにも、

・面積当たり質量から膜厚を算出する際、膜が不均質だと誤差を生ずる。

・柔らかい界面による粘弾性効果が誤差原因となる。

・成膜の膨潤により質量が過大に評価されることがある。

などのトラブルにも注意が必要です。

応用例

・気体センサー

・PVDやめっきにおける成膜速度の推定

・表面に対する分子(タンパク質など)の親和性決定

・生体分子間の相互作用の解明

など。

より具体的な応用事例については機器メーカー、ULVACのホームページ上にて詳説されています。読者のみなさんの研究にも役立つかもしれませんね。

関連論文

・原理についての総説

Alassi A, Benammar M, Brett D. Quartz Crystal Microbalance Electronic Interfacing Systems: A Review. Sensors (Basel). 2017;17(12):2799. Published 2017 Dec 5. doi:10.3390/s17122799

 

・応用事例についての総説

Sandeep Kumar Vashist, Priya Vashist. Recent Advances in Quartz Crystal Microbalance-Based Sensors. Journal of Sensors. Volume 2011, Article ID 571405, 13 pages doi:10.1155/2011/571405

 

・金属有機構造体(MOF)との組み合わせによる気体センサーとしての総説

Luyu Wang. Metal-organic frameworks for QCM-based gas sensors: A review,

Sensors and Actuators A: Physical, Volume 307, 2020, 111984, doi:10.1016/j.sna.2020.111984

 

・バイオセンシングに関する総説

荻博次. 無線振動子バイオセンサの原理と応用. 電子情報通信学会 基礎・境界ソサイエティ Fundamentals Review. 2018, 11(3), p. 180-185.

 

・電極反応(金属の析出)を解析した事例

Jianguo Hu, Xianhe Huang, Song Xue, Göktug Yesilbas, Alois Knoll, Oliver Schneider,

Measurement of the mass sensitivity of QCM with ring electrodes using electrodeposition,

Electrochemistry Communications, Volume 116, 2020, 106744, doi:10.1016/j.elecom.2020.106744

関連書籍

berg

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 超分子カプセル内包型発光性金属錯体の創製
  2. ヒト胚研究、ついに未知領域へ
  3. natureasia.com & Natureダイジェ…
  4. NIMSフォーラム 「未来のエネルギーをつむぐ新材料・新物質、こ…
  5. リケラボとコラボして特集記事を配信します
  6. 多成分反応で交互ポリペプチドを合成
  7. Dead Endを回避せよ!「全合成・極限からの一手」⑨
  8. 作った分子もペコペコだけど作ったヤツもペコペコした話 –お椀型分…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 焦宁 Ning Jiao
  2. 第137回―「リンや硫黄を含む化合物の不斉合成法を開発する」Stuart Warren教授
  3. 究極の黒を炭素材料で作る
  4. 小型質量分析装置expression® CMSを試してみた
  5. オキソニウムカチオンを飼いならす
  6. (+)-ゴニオトキシンの全合成
  7. オペレーションはイノベーションの夢を見るか? その3+まとめ
  8. 京都の高校生の学術論文が優秀賞に輝く
  9. 島津製作所がケムステVシンポに協賛しました
  10. シャレット不斉シクロプロパン化 Charette Asymmetric Cyclopropanation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年7月
« 6月   8月 »
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

腎細胞がん治療の新薬ベルツチファン製造プロセスの開発

2021年夏に米国 FDA はベルツチファン (belzutifan, WeliregTM) という…

マテリアルズ・インフォマティクスの基本とMI推進

見逃し配信視聴申込はこちら■概要2021年9月7日に開催されたウェブセミナー「マテリアル…

【四国化成工業】新卒採用情報(2023卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

四国化成工業ってどんな会社?

私たち四国化成工業株式会社は、企業理念「独創力」のもと「有機合成技術」を武器に「これまでになかった材…

ポンコツ博士の海外奮闘録 外伝② 〜J-1 VISA取得編〜

ポンコツシリーズ番外編 その2 J-1 VISA取得までの余談と最近日本で問題になった事件を経験した…

結合をアリーヴェデルチ! Agarozizanol Bの全合成

セスキテルペンAgarozizanol Bの全合成が初めて達成された。光照射下で進行するカスケード反…

有機合成化学協会誌2022年1月号:無保護ケチミン・高周期典型金属・フラビン触媒・機能性ペプチド・人工核酸・脂質様材料

有機合成化学協会が発行する有機合成化学協会誌、2022年1月号がオンライン公開されました。本…

第167回―「バイオ原料の活用を目指した重合法の開発」John Spevacek博士

第167回の海外化学者インタビューは、ジョン・スペヴァセック博士です。Aspen Research社…

繊維強化プラスチックの耐衝撃性を凌ぐゴム材料を開発

名古屋大学大学院工学研究科有機・高分子化学専攻の 野呂 篤史講師らの研究グループは、日本ゼオンと共同…

反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo 糖化学ノックインインタビュー②】

2021年度科学研究費助成事業 学術変革領域研究(B)に採択された『糖鎖ケミカルノックインが拓く膜動…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP