[スポンサーリンク]

一般的な話題

物凄く狭い場所での化学

 

 

あなたが赤いハイヒールを履いた綺麗なお姉さんと話す機会があったとします。そしてそのお姉さんにハイヒールで思いっきり足を踏まれます。その瞬間あなたの足には約0.01GPaの圧力がかかっていることになります。

人間界では0.01GPaの圧力を足にかけると、人は「痛がる」という挙動を示します。それでは分子やナノクリスタルに圧力をかけると一体どのような挙動を示すのでしょうか?今回はわりと大局的に最近の研究を紹介していこうと思います。

 

まずある物体に圧力をかけると、その分子はなるべく無駄なスペースをなくそうとして圧縮されます。毛糸玉を押すと潰れるのと同じ事です。分子で言うと分子間の圧縮されやすい相互作用(van der Waals力など)が圧縮され、個体結晶で言うと密度が濃い結晶構造に相転移します。そして動きにくくなります。例えば普通の状態であれば液体である水。この水が10GPaの圧力下では400度にしてまだ個体です。つまり“もの”はどんどん動きにくくなっていくのです。[1,2]

そしてこのスペースのなさはその分子軌道にも影響を与え始めます。下は福井謙一先生とともにノーベル賞を受賞したRoald Hoffmann博士の論文からの抜粋です。単純な例ではおなじみのピーナッツ型の窒素分子N2の電子軌道が、圧力下で距離が縮まると丸い楕円形に変化していくのです。

 

2015-12-22_15-49-17

図1 窒素分子に圧力をかけるとa)→d)のように分子軌道を変化させる[参考文献1より抜粋]

 

もちろんより複雑な分子や、結晶構造でも同じことが起こります。より限られたスペースの中で最も安定なエネルギーを得られる軌道を分子や結晶は探し、その欲望に従い形をかえていきます。もちろんHOMO-LUMOの軌道にも大きく影響し、ある圧力下で絶縁体が金属的な挙動を示すことも報告されています。また例えば金属などではその分子軌道によって高圧下で取りうる結晶構造が違ってきたりします。

 

ここまでは一般的な分子や結晶の話です。この分子をナノクリスタルに置き換えると、また新しいパラダイムがそこには開かれています。

例えばAlivisatosらのグループはナノクリスタルにすると、その結晶構造を変化させる圧力が変わることを見つけました。つまり普通のバルクの状態だとCdSeという半導体は2GPa程度で結晶構造が変化するのですが、それをナノクリスタルにしてどんどん小さくしていくと、その大きさに従って変化する圧力が高くなっていき、またもとの状態への戻り(ヒステリシス)が遅くなることを見つけました。[3]

 

つまり圧力下での化学という世界は、ナノクリスタルの世界でもそれとは別個の新しさが広がっているということを見つけたのです。

 

さらにこのナノクリスタルを綺麗に並べたナノクリスタル超格子(スーパーラティス)に圧力をかけるとどうなるのかというところに近年注目が集まっています。Cornell大学のWang博士を中心としたグループは上手く配列したナノパーティクルを上手く圧力をかけることにより、棒状にくっつけることや、シート状にくっつけることが可能であることを報告しています。[4]

 

mcontentjioaefsd.gif

図2 ナノパーティクルがくっついてナノワイヤーに変化する[参考文献4aのTOCより抜粋]

 

つまり圧力というのを使って、ナノパーティクルを違う形に加工することを提案しているのです。まるで粘土の玉をくっつけるがごとく、新しい形へと変化させます。

 

これらの流れの中からこれからの高圧下での実験はどのように進んでいくのでしょうか?温度を変えて挙動を調べてダイヤグラムを構築するというのはこれからの科学の知見として重要になることは間違いないでしょう。圧力前のサンプルを上手くデザインすることにより、高圧下でのみ作られうる新しいデザインのナノ構造を見出すことも重要になってくると思います。また無機のナノクリスタルと有機分子を上手く相互作用させうるような現象を観察することでも新たな世界が広がっていくことでしょう。

 

皆さんは粘土や毛糸を扱うように、ナノパーティクルや分子やポリマーをくっつけられたりすることが出来たら、どんなものが作ってみたいですか?

 

追記

この記事を制作している途中にRoald Hoffmann氏による寸劇を発見しました。高圧下で分子がどう動くかを劇にして説明しています。なかなか前衛的で刺激的なこの作品。難しい事象を説明する試みに新たな一石を投じるものであると思われます。
氏が化学者として活躍しているだけではなく、詩人としての顔を持ち合わせていることはWikipediaで知っていたのですが、まさか舞台監督としての顔も持ち合わせているとは。ぼくはこういう自由な発想をもつ科学者になりたいです。

 

 

参考文献

  1.   W. Grochala,  R. Hoffmann et al. Angew. Chem. Int. Ed. 2007, 3620. DOI : 10.1002/anie.200602485
  2.  一例として  C.L. Guillaume et al. Nature Physics 2011, 211.  DOI: 10.1038/NPHYS1864
  3. (a) S. H, Tolbert and A. P. Alivisatos Science 1994, 373 DOI: 10.1126/science.265.5170.373  (b) A. P. Alivisatoset al. Science 1996, 398. DOI: 10.1126/science.276.5311.398
  4. (a) H. Wu, Z. Wang et al. Angew. Chem. 2010, 8609. DOI: 10.1002/ange.201001581  (b) Z. Wang et al. JACS 2011, 14484. DOI: 10.1021/ja204310b

関連記事

  1. 地域の光る化学企業たち-1
  2. ベンゼン一つで緑色発光分子をつくる
  3. 私がケムステスタッフになったワケ(1)
  4. ヘテロベンザイン
  5. 化学のうた
  6. アノマー効果を説明できますか?
  7. 5配位ケイ素間の結合
  8. やっぱりリンが好き

コメント

  • トラックバックは利用できません。

  • コメント (1)

  1. “人間界では0.01GPaの圧力を足にかけると、人は「痛がる」という挙動を示します。それでは分子やナノクリスタルに圧力をかけると一体どのような挙動を示すのでしょうか?今回はわりと大局的に最近の研究を紹介し

注目情報

ピックアップ記事

  1. 標的指向、多様性指向合成を目指した反応
  2. 第一三共 抗インフルエンザ薬を承認申請
  3. フッ素をホウ素に変換する触媒 :簡便なPETプローブ合成への応用
  4. 旭化成ファーマ、北海道に「コエンザイムQ10」の生産拠点を新設
  5. リンダウ会議に行ってきた③
  6. コエンザイムQ10 /coenzyme Q10
  7. 大鵬薬品、米社から日本での抗癌剤「アブラキサン」の開発・販売権を取得
  8. 世界を股にかける「国際学会/交流会 体験記」
  9. DNAに電流通るーミクロの電子デバイスに道
  10. 研究室ですぐに使える 有機合成の定番レシピ

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

国連番号(UN番号)

危険な化学品を飛行機や船を使って輸送することは、現代では日常的に行われていることである。安全に化学品…

生きた細胞内でケイ素と炭素がはじめて結合!

生物は豊富にあるケイ素を利用しない。このたび、ケイ素と化学結合を形成して体内の生化学経路に取り込むこ…

H-1B ビザの取得が難しくなる!?

先日、米国の博士研究員の最低賃金変更についてお伝えしました。トランプ政権では、専門職に就くために…

高速エバポレーションシステムを使ってみた:バイオタージ「V-10 Touch」

タイトルから何だそれ?と思った方々。正しいです。高速のエバポ?どういうこと?と思うことでしょう。…

最も安価なエネルギー源は太陽光発電に

A transformation is happening in global energy mar…

有機反応を俯瞰する ー挿入的 [1,2] 転位

今回は、Wolff 転位、Curtius 転位あるいは Hofmann 転位といった反応を取り上げま…

Chem-Station Twitter

PAGE TOP