[スポンサーリンク]

化学者のつぶやき

ヒスチジン近傍選択的なタンパク質主鎖修飾法

[スポンサーリンク]

ライス大学・Zachary T. Ballらは、Cu(II)を利用したアリール/アルケニルボロン酸との酸化的カップリングによって、中性条件下・室温という穏和な条件下でのポリペプチド主鎖N-H結合の修飾に成功した。この反応はヒスチジン残基近傍のアミドN-H結合選択的に進行し、タンパク質に対しても位置選択的な修飾を行うことができる。

“Histidine-Directed Arylation/Alkenylation of backbone N-H Bonds Mediated by Copper(II)”

Ohata, J.; Minus, M. B.; Abernathy, M. B.; Ball, Z. T.* J. Am. Chem. Soc. 2016, 138, 7472. DOI: 10.1021/jacs.6b03390

問題設定と解決した点

 ポリペプチドN-アルキル誘導体の作成は困難な課題である。従来は非天然アミノ酸担持tRNAを利用する方法[1]や固相合成法[2]などで合成されてきたが、反応の遅さなどが問題でそもそも合成できない場合もある。ポリペプチド主鎖に反応を行い直接誘導体化する手法はほとんど報告例がない。タンパク質修飾反応のほとんどはペプチド側鎖を標的としている。

 本論文で報告される条件は冒頭図の様に、ヒスチジン(His)残基近傍のポリペプチド主鎖に対して修飾を施せることが最大の特徴となる。水素結合に関わるN-H結合を修飾することで、タンパク構造に与える影響が大きくなる。ゆえに通常のペプチドとは異なるフォールディング・安定性・機能を持つ新規ペプチドライブラリ構築に繋げうる。また、タンパク活性部位に存在するHis近傍を修飾すれば活性部位が潰れ、機能の変化を観察することも期待できる。

技術と手法の肝

Chan-Lam-Evansカップリング条件下にてボロン酸をアミドN-H結合に対して反応させる例に着目し、これを水中・中性条件下、ポリペプチド鎖に対しても適用可能な条件に改良している。反応はHisのN末方向に隣接するアミドN-H結合を標的として進行する。この選択性はATCUN(amino-terminal Cu and Ni-binding) モチーフ[3]に類する中間体からの還元的脱離に由来すると考察されている。

主張の有効性検証

tyrotropin-releasing hormone (TRH, Glp-His-Pro-NH2)を基質に条件検討。銅(II)非存在下では反応は進行しない。ピログルタミン酸(Glp)が反応箇所であることは精製後生成物のNOESY・COSY・MS/MS測定にて決定。ボロン酸はアリールボロン酸、アルケニルボロン酸を広く活用可能。

本条件はタンパク質に対しても適用可能であり、リゾチーム(一次配列にHisは1つだけ含まれる)に対しては有機トリフルオロボレートを用いることで一修飾体を得ることが可能。ケミカルバイオロジー研究に有用なアジド、アルキン、デスチオビオチンなどを導入できる。

議論すべき点

  • 基質に対してボロン酸試薬は過剰量必要になる(ペプチドの場合は5~10当量、リゾチームの場合は50当量)。それでも反応に時間がかかる(overnight)。
  • 標的アミノ酸の種類に反応性は大きく依存しているように見える。とくに反応点が内部にある場合は遅そう。複数のヒスチジンに対し選択性を出せる可能性と捉えることもできそう。

  • ヒスチジンはタンパク質の活性部位にあることも多く、タンパク機能を保持しつつ化学修飾を行う手法として見ると、適用しにくいケースも少なからずあるように思われる。

次に読むべき論文は?

  • おそらく本反応の開発過程で見いだされたであろう、銅(II)+ボロン酸を利用したペプチド鎖N末端修飾反応の続報[4]
  • タンパク質の位置選択的修飾を目指している研究例[5]

参考文献

  1. Liu, C. C.; Schultz, P. G. Annu. Rev. Biochem. 2010, 79, 413. doi: 10.1146/annurev.biochem.052308.105824
  2. Chatterjee, J.; Laufer, B.; Kessler, H. Nat. Protoc. 2012, 7, 432. doi:10.1038/nprot.2011.450
  3. Harford, K.; Sarkar, B. Acc. Chem. Res. 1997, 30, 123. DOI: 10.1021/ar9501535
  4. Ball, Z. T. et al. Chem. Commun. 2017, 53, 1622. DOI: 10.1039/C6CC09955F
  5. (a) Davis, B. G. et al. J. Am. Chem. Soc. 2016, 138, 8678. DOI: 10.1021/jacs.6b04043 (b) Pentelute, B. L. et al. Nat. Chem. 2016, 8, 120. doi:10.1038/nchem.2413

関連記事

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 2015年ケムステ人気記事ランキング
  2. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて②~
  3. C-H酸化反応の開発
  4. カルボン酸に気をつけろ! グルクロン酸抱合の驚異
  5. ポケットにいれて持ち運べる高分子型水素キャリアの開発
  6. 「低分子医薬品とタンパク質の相互作用の研究」Harvard大学 …
  7. 世界最大級のマススペクトルデータベース「Wiley Regist…
  8. EDTA:分子か,双性イオンか

注目情報

ピックアップ記事

  1. Nature Reviews Chemistry創刊!
  2. 周期表の形はこれでいいのか? –その 2: s ブロックの位置 編–
  3. 2014年化学10大ニュース
  4. ナノってなんて素敵ナノ
  5. 高分子/金属・無機界面の相互作用と接着・密着性、耐久性の向上【終了】
  6. ケムステVシンポ「最先端有機化学」開催報告(前編)
  7. 新コース開講! 東大発の無料オンライン英語講座!
  8. 分子レベルでお互いを見分けるゲル
  9. LEGO ゲーム アプローチ
  10. 米FDA、塩野義の高脂血症薬で副作用警告

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP