[スポンサーリンク]

ケムステニュース

換気しても、室内の化学物質は出ていかないらしい。だからといって、健康被害はまた別の話!

[スポンサーリンク]

Human health is affected by indoor air quality. One distinctive aspect of the indoor environment is its very large surface area that acts as a poorly characterized sink and source of gas-phase chemicals. In this work, air-surface interactions of 19 common indoor air contaminants with diverse properties and sources were monitored in a house using fast-response, on-line mass spectrometric and spectroscopic methods.   (引用:GIZMODO 2月26日)

自宅のリビングで焼き肉をすると、いくら換気をしても匂いが数日間取れなかった経験はないでしょうか。今回は、部屋の換気について研究した結果を紹介します。

本研究は、House Observations of Microbial and Environmental Chemistry (HOMEChem)プロジェクトの一環で行われました。HOMEChemは室内の化学を解明するIndoor Chemistryの活動の一部としてAlfred P. Sloan Foundationの支援を受けながら行われています。この論文の研究は、トロント大学のJonathan P. D. Abbatt教授らのグループとUC BerkeleyのWilliam W. Nazaroff教授らのグループが中心となって行われました。 Abbatt教授らのグループでは、環境に関する研究をメインで行っていて北極圏でのフィールド試験にも参加しているようです。一方のNazaroff教授は土木環境工学が専門で、屋内の化学的、物理的な環境について研究されています。HOMEChemは大きなプロジェクトであることからこの2グループ以外にも、多数の環境化学や環境工学の専門家が参加しました。

実験は、テキサス大学にある試験用の家、UTest Houseで行われました。試験用の家といっても広さは計111 m2でキッチンとリビングルームに加えて3つのベッドルームと2つの風呂があり、自分の家よりかなり充実しています。実験では、風呂のドアのみ締め切りで、室内の空気循環装置は常にオン、換気機能付きエアコンは、天井に備え付けれているもののみ使用しました。空気中の化合物のリアルタイム定量について、酸性の成分は、Chemical Ionization Time-of-Flight Mass Spectrometer (TOF-CIMS)という質量分析装置で測定されました。Chemical Ionization型のMSでは基質が高電圧でイオン化され、それが測定対象と反応することで間接的にイオン化されます。本研究では基質に酢酸を用いて、酢酸イオンが観測対象の酸性物質からプロトンを受け取る代わりに観測対象がイオン化されMSによって検出されます。非酸性化合物は、Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS)で質量分析が行われました。この方法では、水蒸気がイオン化されヒドロニウムイオン(H3O+)となり、測定対象をプロトン化させMSで検出されるようになります。カチオンになりやすい分子ほどイオン化されやすいので、揮発性有機化合物(VOC)の検出に使用したと推測されます。どちらの測定機器も家の中心であるキッチン付近からサンプルを採取しました。

実験に使用されたToF-CIMS(出典:Aerodyne Research社)

実験に使用されたPTR-TOF-MS(出典:IONICON社)

まず換気扇、窓の開放、エアコンによる換気の効果を確かめるために、様々な組み合わせで換気を行い化学種の濃度の変化を調べました。アンモニアやC2からC9のカルボン酸、VOCであるセスキテルペン、モノテルペン、デカメチルシクロペンタシロキサン、エタノール、フルフラール、フェノールを追跡しましたが、どの化学種においても換気中は外の濃度に近づきますが、数十分で元の濃度に戻ってしまうことがわかりました。換気の効率に関して、窓を開けたほうが室外の風速により開放中の濃度は低くなることがわかりました。アンモニアや水に溶けやすいVOCの濃度は絶対湿度にも依存するため、換気後の最大濃度は湿度によって変わり、エアコンを作動されると水に溶けやすい化学種の濃度も徐々に低下することが観測されました。この結果をもとに時間ごとの濃度変化を使って化学種の応答時間を計測すると、換気後カルボン酸は速く、アンモニアやテルペン類は遅く室内の空気中に拡散することがわかりました。

HOMEChemによる換気設備のアドバイス

次に、床をお酢の水溶液を使ったモップがけとアンモニア水のスプレーを行いました。お酢のモップ掛けによって床のpHが低下するためいくつかのカルボン酸の空気中の濃度は上昇しました。表面のpH上昇を狙って行ったアンモニア水のスプレーについては、同時に行ったお酢のモップ掛けによって効果が弱められ顕著な違いは見られませんでした。上記の結果を理解するために各化学種の分配係数を計算してモデリングを行ったところ、換気を行った時の化学種の振る舞いについては再現することができましたが、単位体積あたりの吸着の挙動については再現することができず、極性か非極性の表面、空気中のどこに存在するのが最も安定なのかを正確に再現することはできませんでした。分子の表面の相互作用は、水素結合なども関係していて分配係数だけは完全に説明できないからで室内の化学種の濃度変化については、より複雑なモデルを作って研究する必要があると次のステップについて論文中ではコメントしています。

HOMEChemによる掃除のアドバイス

実験は単純で、室内の化学種の濃度を測定しながら換気や掃除を行って値が変化するかを観測しているだけですが、ppbオーダーの濃度を測定しているためバックグラウンドのコントロールが難しかったかもしれません。いくら換気をしてもすぐに室内の化学種の濃度は元に戻ってしまうということで、窓を短時間空けるよりもファンを連続で運転させるほうが効果的で、カルボン酸を効果的に取り除くには、エアコンを使って湿度を下げる必要があるといえます。しかしこの実験は、室内に常に存在するVOCなどを対象とした実験であり、焼き肉やおならなどによって大量の化合物が発生した場合には、窓を開けたほうが早く匂いをとることができるのは明らかだと思います。HOMEChemに関する論文は他にも発表されていて、特に料理に関する実験については、料理する方法によって拡散される微粒子や化学種も大きく異なることがデータで示されているため興味深い内容となっています。

料理の実験を行った時の様子

室内という極めて複雑な系で実験を行い分子の吸脱着を理解しようとしたこの研究は、シックハウス症候群の被害を減らすのに役立つのではないかと思います。モデリングはこの論文では完成できませんでしたが、この研究が発展すれば、部屋にとどまりやすい化学種の特定と軽減方法の解明によってシックハウスのリスクが少ない建築や家具の材料開発につながるかもしれません。またタバコの匂いにはいろいろな不利益があり、例えば喫煙車を売却するときには売値が下がり、賃貸の家で喫煙すると原状復帰に多額の追加費用がかかってしまいます。そのためこの研究が発展すれば、たばこなどの匂いが吸着されにくい建築材料の開発にも役立つと思います。

関連書籍

[amazonjs asin=”4501629401″ locale=”JP” title=”住まいの化学物質”] [amazonjs asin=”B071GTG3T6″ locale=”JP” title=”「香り」の科学 匂いの正体からその効能まで (ブルーバックス)”]

関連リンク

  • HOMEChemプロジェクトの紹介とその結果を踏まえた家の構造に関するアドバイスの動画リスト

  • IONICON社のPTR MSの紹介

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 日宝化学、マイクロリアクターでオルソ酢酸メチル量産
  2. ストラディバリウスの音色の秘密は「ニス」にあらず
  3. DNAに電流通るーミクロの電子デバイスに道
  4. 信越化学・旭化成ケミカルズが石化品値上げ
  5. 旭化成、5年で戦略投資4千億
  6. 高純度化学研究所が実物周期標本を発売開始
  7. イタリアに医薬品販売会社を設立 エーザイ
  8. 秋の味覚「ぎんなん」に含まれる化合物

注目情報

ピックアップ記事

  1. 吉岡里帆さんが出演する企業ブランド広告の特設サイト「DIC岡里帆の研究室」をリニューアル
  2. ケムステニュース 化学企業のグローバル・トップ50が発表【2020年版】
  3. ウェルチ化学賞・受賞者一覧
  4. 日本学士院賞・受賞化学者一覧
  5. ナイトレン
  6. 1-ヒドロキシタキシニンの不斉全合成
  7. クライゼン縮合 Claisen Condensation
  8. Post-Itのはなし ~吸盤ではない 2~
  9. アジリジンが拓く短工程有機合成
  10. アルケンのE/Zをわける

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

電子一つで結合!炭素の新たな結合を実現

第627回のスポットライトリサーチは、北海道大有機化学第一研究室(鈴木孝紀教授、石垣侑祐准教授)で行…

柔軟な姿勢が成功を引き寄せた50代技術者の初転職。現職と同等の待遇を維持した確かなサポート

50代での転職に不安を感じる方も多いかもしれません。しかし、長年にわたり築き上げてきた専門性は大きな…

SNS予想で盛り上がれ!2024年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 2024…

「理研シンポジウム 第三回冷却分子・精密分光シンポジウム」を聴講してみた

bergです。この度は2024年8月30日(金)~31日(土)に電気通信大学とオンラインにて開催され…

【書籍】Pythonで動かして始める量子化学計算

概要PythonとPsi4を用いて量子化学計算の基本を学べる,初学者向けの入門書。(引用:コ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP