[スポンサーリンク]

身のまわりの分子

IGZO

[スポンサーリンク]

インジウム (Indium) 、ガリウム (Gallium) 、亜鉛 (Zinc) 、酸素 (Oxygen) から構成されるアモルファス半導体の略称でシャープの液晶で有名になった。

概要

IGZOは、構成する元素であるインジウム (Indium) 、ガリウム (Gallium) 、亜鉛 (Zinc) 、酸素 (Oxygen)の頭文字を取って名前が付けられた材料である。スパッタリングと呼ばれるターゲット材から分子をたたき出して積層させる手法で薄膜として作られる。スマホをはじめとしたディスプレイには薄膜トランジスタ(TFT)と呼ばれる発光やカラーフィルタのスイッチングを司る部品が不可欠で、その部品の一部の薄膜にこのIGZOが使われる。そのため、IGZOを使ったTFTについてIGZO-TFTと呼ばれている。

スパッタリングの原理、この図では下部がターゲットで上部が成膜先の基板である

スパッタリング中の写真、この写真では、下部に基板がある。光っているのはプラズマ状態になっているからである。

特徴

TFTの性能は、電子移動度とリーク電流の大きさで決まる。従来使われているアモルファスシリコンのTFTよりも電気移動度は20倍ほど速いためTFTの大きさを小さくすることができ、省電力化ち高繊細化を実現している。また、リーク電流も千分の一ほど少ないため、静止画を表示状態では、TFTを休止させることができ電気的ノイズを低減できる。電気的な変化で指のタッチを検出するタッチパネルにIGZOを採用すると、より高精度にタッチを検出することができるようになる。

 

ディスプレイの断面図。実際にはバックライトが下部にあるため、TFTが小さいほうが光を多く透過させることができる。

静電容量式のタッチパネルの原理

間違った認識

IGZOに関して間違って認識が二つある。

IGZOよりOLEDのほうが優れている。

IGZOはTFTの部品なのに対してOLEDは発光方式なので比較できない。事実、IGZO-TFTを使ったOLEDディスプレイというものの開発が行われている。

IGZOはシャープが開発した

シャープによって製品化がなされたが、初めから開発したわけではない。IGZOは東工大の細野教授らがJSTの創造科学技術推進事業 (ERATO) および戦略的創造研究推進事業 発展研究 (SORST) で開発されたもので、シャープは2012年からライセンス契約に基づいて製品化した。そのためIGZOの特許権や関連特許、「IGZO」という登録商標はJSTが所有している。一方でシャープは、「イグゾー」とそのロゴの商標権を保有している。

IGZOが採用されているシャープ製のスマホ。省電力化の影響で2日バッテリーが持つスマホとCMで謳っている。

参考文献

  • K, Nomura.; H, Ohta.; A. Takagi.; T, Kamiya.; M, Hirano.; H, Hosono. Nature 2004, 432, 488. DOI:10.1038/nature03090

関連書籍

[amazonjs asin=”4274504298″ locale=”JP” title=”世界を先駆ける日本のイノベーター”] [amazonjs asin=”4484147297″ locale=”JP” title=”Pen+(ペン・プラス) 日本の科学技術を支える巨大施設を徹底解剖! SPring-8のすべて。 (メディアハウスムック)”]

 

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 水 (water, dihydrogen monoxide)
  2. ダイヤモンドライクカーボン
  3. オーラノフィン (auranofin)
  4. エンテロシン Enterocin
  5. フィブロイン Fibroin
  6. フラーレン /Fullerene
  7. ジブロモインジゴ dibromoindigo
  8. フタロシアニン phthalocyanine

注目情報

ピックアップ記事

  1. π⊥ back bonding; 逆供与でπ結合が強くなる?!
  2. パラジウム錯体の酸化還元反応を利用した分子モーター
  3. Qi-Lin Zhou 周其林
  4. 今年は Carl Bosch 生誕 150周年です
  5. ジャン=ピエール・ソヴァージュ Jean-Pierre Sauvage
  6. ケムステ版・ノーベル化学賞候補者リスト【2022年版】
  7. 100年以上未解明だった「芳香族ラジカルカチオン」の構造を解明!
  8. 危険物に関する法令:危険物の標識・掲示板
  9. 『Ph.D.』の起源をちょっと調べてみました① 概要編
  10. ヘリウムガスのリサイクルに向けた検討がスタート

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP