[スポンサーリンク]

一般的な話題

工程フローからみた「どんな会社が?」~半導体関連

[スポンサーリンク]

Tshozoです。

職業柄よく半導体関連の部品を触るのですが毎度多数の企業の方々が関わっておられることに驚かされます。これを作るには高度な化学と物理と製造の技術が不可欠ですが、専門誌の広告以外にはあんまり前面に出てないですね。しかし社会に広く携わる化学の底上げがあって世の中も変わっていくわけなんで、そういう分野で活躍されている企業・各位をもっと応援したいという気分に基づき本記事を書いてみます。

ということでシリコン系半導体の製法をざっと見ながら関わっている(であろう)国内企業を列挙していくとしてみます。太陽電池などでは高純度シランガスが使われる場合がありますし発光ダイオードなどにはGaNが使われるなど半導体のタイプによって材料も様々なのですが今回は割愛。あと、都合によりやや古めの技術を基準に書いていきますがその点のみご了承ください。なおこのちょっと前の記事にある「太陽ホールディングス」社も、最終製品は異なりますが周辺部材には確実に存在する部品群を担っているわけです。

【半導体の作製方法:精製Si→ウエハーまで】

半導体の作り方の入り口であるウエハ作製まで見てみると、高純度原料(多結晶Si)を溶かし棒をつくってスライスして研いて完成です。文字にすると1行で済むのですが、これがぁ超高純度(99.99999999%)と形状精度(300mm中で許容凹凸サイズ数um[平均距離内の『うねり』で定義・詳細略])を要求されるわけで。特にこの300mm~450mm以上の大径版シリコンウェハをつくれるのはごく限られたメーカのみで、その中で日本のSUMCO信越化学の2社で世界生産量の60%近く(2017年・推定値)をたたき出しています。この他台湾、ドイツ、韓国の各社を足してほぼ100%となるのですが、数ある半導体製品の中でも特に技術力・管理力の粋を尽さないと製造できない製品だと言ってよいでしょう。

図は文献1から引用して改編

今回はここまでであくまで筆者の伝聞・調査に基づいた一般的なところの国内の関連化学メーカさんを挙げましょう。。あんまり表に出てきてないメーカさんが心臓部を握ってるケースもあるのですが・・・ともかくその組み合わせに妙があり、各社ノウハウを積み重ねて安定的に超高純度・超高精度な製品を供給しているわけです。工程順に原材料(ポリシリコン)、刃具、研ぐ関係の材料のメーカさんを紹介していきます(以下敬称略・今回は設備メーカ殿は除外)。

【精製Si】・・・高純度の粗シリコンという形で供給される
⇒⇒⇒(多結晶シリコン) トクヤマ大阪チタニウム三菱マテリアル

【Siインゴット化】・・・上記で述べたようにSUMCOと信越化学が2強 独シルトロニックと台湾GWCなどが健闘している

【切断】・・・今回はワイヤスライシング限定 微粒ダイヤモンド合成やワイヤに確実に固定する特有技術は秘中の秘らしい
⇒⇒⇒(切削用ワイヤ) 旭ダイヤモンドジャパンファインスチール中村超硬
⇒⇒⇒(切削微粒子) ダイヤマテリアルフジミインコーポレイティッドトーメイダイヤ

【粗研磨】・・・いわゆる「粗~仕上げラッピング」比較的ラフな研磨 加工装置や固定用具との精密なチューニングが必要
⇒⇒⇒ 3M(研磨テープ/パッド)、ニッタハース(パッド/研磨剤)、日立化成(固定テープ/研磨剤)、フジミインコーポレイティッド(研磨剤)

【エッチング】・・・研磨で出た有機物、酸化膜、金属イオンを取り去る工程(研磨の前後で実施) ドライとウェットがある
⇒⇒⇒ステラケミファ(HF溶液)、関東化学(洗浄液)、多摩化学工業(洗浄液)、和光純薬(洗浄液)、共同過酸化水素(洗浄液原料)

【精密研磨】・・・「ポリッシング」材料の粋が詰まった工程 粗研磨同様加工機・キャリア等との取り合いが必要
研磨剤(スラリー)、CMPパッド、CMPパッドコンディショナが主な構成品
シリコンウェハ単体の研磨はかなりメーカが固定されているもよう(酸化物や銅、タングステン相手だともっと多様)
⇒⇒⇒(研磨剤)扶桑化学工業フジミインコーポレイティッドニッタハース
⇒⇒⇒(パッド)ニッタハース
⇒⇒⇒(パッドコンディショナ)旭ダイヤモンド

どうでしょうか、シリコン板1枚を切り出すのにこの騒ぎ。これのどの工程が欠けても製品に辿り着かないうえ、ここらへんまでで回路が描かれた半導体に行くまでの1/4くらいなのです(最近ではこのシリコンウェハにエピ成長処理を施しているケースもあり、さらに複雑化してきている)。加えてコンタミ防止用のフッ化物樹脂を合成しているダイキン旭硝子も含まれますし、装置関係を考えるとたとえばチョクラルスキー法で使う超高純度石英の材料には三菱ケミカルが関わっていたりと、さらにその関係会社の数は指数関数レベルで増えていくような気がします。

また世界に目をむけると、これに実際には海外の材料・設備メーカが関わっているはずですのでそこらへんまではさすがに調査会社でも使わないとムリですね・・・たとえばこの後のプロセスでは削る材料ごとにパッド・研磨剤も変わっていくのでそりゃもう調べるのに時間かかりますよ(特に研磨パッドは世界ではDowDupont系のKinik社や、米Cabot microelectronicsが大きなプレゼンスを占めています)。このようにひとつの製品が仕上がるのにどれだけの技術が注がれてどれだけのサプライチェーンがあるのかに興味を持つことは毎度ながら非常に勉強になるんではないでしょうか。蛇足ながら、関東化学さんは「しごと」シリーズの中でも紹介されてますな(こちらこちらなど)。

ちなみに何故ケイ素が基礎材料になったのかですが、結晶構造が昔からよく研究されていて検証しやすかったうえ奇跡的に(?)p/n型半導体になることが出来たこと。加えて最近ではSiCやGaNなどいわゆる化合物半導体と呼ばれるタイプのものが高温化・低損失化を目的に用途が広がってきており、またそれに合わせてさらにこうした材料系の裾野が広がっていくという。化学会社にとっては困難度が増していくのはもちろんなのですが、今までのノウハウが積み重なっていることを利用しさらにシェアを食いに行ける&用途を増やしていく環境が増えていっているのではないかとも言えます。

もちろん今回挙げた各企業はBtoBがメイン商売の企業がほとんどで、某A社とか某S社とかの顧客側に買いたたかれるケースが多いのも事実でありかつリスクではあります。が、ここらへんの舵取りをうまくやっていって技術と商売を広げていく度胸と根性と愛嬌が必要になるのは昭和以降の多くの偉大な先人が拓いてきた先例を見ても明らか。とかく最近シュリンクしがちな製造業ですが、ここで挙げたキー技術を持つ各社のように、新たな分野へ攻め続けるという資本主義の発展の原則に今一度立ち返ってみるべきなのではないかとも思う次第です。

ということで今回はこんなところで。またこの続きのプロセスをやるか、別の製品を採り上げるかは様子を見ながらやっていきたいと思います。

【参考文献】

この記事全般に台湾の中山大学 黄義佑先生の資料を参考にいたしました 図などもそちらより引用しております リンク

Avatar photo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. 炭素繊維は鉄とアルミに勝るか? 番外編 ~NEDOの成果について…
  2. 100年前のノーベル化学賞ーフリッツ・ハーバーー
  3. 研究室でDIY! ~明るい棚を作ろう~
  4. 第17回日本化学連合シンポジウム「防災と化学」
  5. 可視光光触媒でツルツルのベンゼン環をアミノ化する
  6. 君はホンモノの潤滑油を知っているか?:自己PRで潤滑油であること…
  7. アルメニア初の化学系国際学会に行ってきた!②
  8. 中学入試における化学を調べてみた 2013

注目情報

ピックアップ記事

  1. 第124回―「生物・医療応用を見据えたマイクロ流体システムの開発」Aaron Wheeler教授
  2. 【技術者・事業担当者向け】 マイクロ波がもたらすプロセス効率化と脱炭素化 〜ケミカルリサイクル、焼成、乾燥、金属製錬など〜
  3. アルケンとCOとジボロンからジボリルシクロプロパンを作る
  4. トリチウム水から完全無害な水素ガスを作り出す?
  5. 付設展示会へ行こう!ーWiley編
  6. 【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る
  7. 国際化学オリンピック、日本の高校生4名「銀」獲得
  8. ラジカルと有機金属の反応を駆使した第3級アルキル鈴木―宮浦型カップリング
  9. 第121回―「亜鉛勾配を検出する蛍光分子の開発」Lei Zhu教授
  10. ヘテロベンザイン

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年8月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP