[スポンサーリンク]

一般的な話題

電子デバイス製造技術 ーChemical Times特集より

[スポンサーリンク]

関東化学が発行する化学情報誌「ケミカルタイムズ」。この情報誌の紹介も完全にシリーズ化し、今回で7回目。毎度のことながらケミカルタイムズという雑誌名を超えた、幅広い分野が扱われています。

今回はタイトルにあるように、特集として「電子デバイス製造技術」にスポットをあてた4つの記事について紹介したいと思います(記事はそれぞれのタイトルをクリックしていただければ全文無料で閲覧可能です。PDFファイル)。

省資源・省エネ・超低設備コストを実現した超小型デバイス製造システム-ミニマルファブ

近年の快適生活にはなくてならない電子デバイス。これらをつくる電子デバイス工場(メガファブ)は需要加速により拡大に拡大を重ね、いまでは1ライン当たり1兆円規模の投資が必要となるそうです。ただそれだけの投資を回収できるほどの受注を得られているのはごくわずか。単一デバイスではほとんどありません。現状では1万個以下の受注が多く、そのオーダーに適した「小さな工場」が求められています。

本記事では多品種少量生産に特化した超小型製造システム「ミニマルファブ」についての概要を述べています。

電子デバイス超小型製造システム「ミニマルファブ」

 

すべてのデバイスに対応できるわけではなく一長一短ありそうですが、投資額と電力消費をメガファブの1/1000とすることを目指しています。上記の写真にあるようにすでにデバイス製造システムとして具現化、試作されており、実際の電子デバイス製造として実用化される日も近いようです。

半導体製造CMP工程後の洗浄技術

ウェーハ表面を研磨により平坦化する技術を化学機械平坦化(CMP: Chemical Mechanical Planarization)といいます。

半導体製造工程の1つであるCMP技術も埋め込み→平坦化を目的とした基本的な工程は代わりませんが、最近、半導体チップの微細化・高集積化にともなう材料の変化により、平坦性や欠陥のさらなる厳しい管理が求められています。

CMPのイメージ

 

本記事ではCMP装置の変遷からはじまり、主にCMP後の洗浄(砥粒、研磨屑、有機残渣、金属不純物などの残留物を除く)方法について述べています。

CMP後の洗浄の流れと薬液と装置の位置づけ

 

半導体CMPプロセスにおける 金属腐食の電気化学解析

上述したCMPには様々なものがありますが、その中でも銅やコバルトのような金属のCMPを行う場合腐食を抑制することが重要な課題であり、そのためには電気化学解析が最も有効な手法としてもちいられます。記事では通常のpH-酸化還元電位図に腐食電流を加えた三次元図(著者らが開発・提案)を実験的に作成した例を紹介しています。

上図の深い溝になっている部分が腐食でにであり、それよりも右下(低電位側)の不活態領域では水素が発生する還元反応が起こっており、電流密度が高くても腐食は起こらない。腐食電位の左上(高電位側)の酸性側に低電流密度領域が存在し(白い領域)、実験にもちいたCMPスラリー(pH3)の腐食電流は非常に低いことがわかります。

*スラリー:CMPに使用される研磨液のこと

 有機残渣除去性を改善した新規なアルカリ性Cu-CMP後洗浄液

一番化学っぽい記事。現在Cu-CMP後洗浄プロセスで最も大きな課題である

「CMP後にウェーハ表面に残留する有機残渣除去性の改善」

を目的として、アルカリ性水溶液中での各種錯化剤の効果を調査に基づいた結果として報告しています。有機残渣にはCu防食剤として含まれている1,2,3-ベンゾトリアゾール(BTA)のようなヘテロ環がCuと作用して錯体となって安定化しているものが多いとのこと。これらに錯化剤(含窒素五員環化合物)を作用させてはがすことにより、有機残渣を除去するといったわけです。

Cu-BTA錯体除去の推定反応メカニズム

 

著者は関東化学の室長であり、関東化学でも同CMP後洗浄溶液を販売しています。関連商品を御覧ください。

関連製品

過去のケミカルタイムズ解説記事

外部リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 微少試料(1 mg)に含まれる極微量レベル(1 アトグラム)の放…
  2. 「社会実装を目指すマイクロ流体デバイス ~フロー合成と生体・環境…
  3. NBSでのブロモ化に、酢酸アンモニウムをひとつまみ
  4. 電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応…
  5. 息に含まれた0.0001%の成分で健康診断
  6. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  7. 分子の聖杯カリックスアレーンが生命へとつながる
  8. イオンのビリヤードで新しい物質を開発する

注目情報

ピックアップ記事

  1. 元素の和名わかりますか?
  2. 第三回ケムステVシンポ「若手化学者、海外経験を語る」開催報告
  3. マスクをいくつか試してみた
  4. 富士フイルム、英社を245億円で買収 産業用の印刷事業拡大
  5. アスパラプチン Asparaptine
  6. 有機EL organic electroluminescence
  7. カルベンで挟む!
  8. 未来の科学コミュニティ
  9. 再生医療ーChemical Times特集より
  10. メーヤワイン・ポンドルフ・ヴァーレイ還元 Meerwein-Ponndorf-Verley (MPV) Reduction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP