[スポンサーリンク]

一般的な話題

電子デバイス製造技術 ーChemical Times特集より

[スポンサーリンク]

関東化学が発行する化学情報誌「ケミカルタイムズ」。この情報誌の紹介も完全にシリーズ化し、今回で7回目。毎度のことながらケミカルタイムズという雑誌名を超えた、幅広い分野が扱われています。

今回はタイトルにあるように、特集として「電子デバイス製造技術」にスポットをあてた4つの記事について紹介したいと思います(記事はそれぞれのタイトルをクリックしていただければ全文無料で閲覧可能です。PDFファイル)。

省資源・省エネ・超低設備コストを実現した超小型デバイス製造システム-ミニマルファブ

近年の快適生活にはなくてならない電子デバイス。これらをつくる電子デバイス工場(メガファブ)は需要加速により拡大に拡大を重ね、いまでは1ライン当たり1兆円規模の投資が必要となるそうです。ただそれだけの投資を回収できるほどの受注を得られているのはごくわずか。単一デバイスではほとんどありません。現状では1万個以下の受注が多く、そのオーダーに適した「小さな工場」が求められています。

本記事では多品種少量生産に特化した超小型製造システム「ミニマルファブ」についての概要を述べています。

電子デバイス超小型製造システム「ミニマルファブ」

 

すべてのデバイスに対応できるわけではなく一長一短ありそうですが、投資額と電力消費をメガファブの1/1000とすることを目指しています。上記の写真にあるようにすでにデバイス製造システムとして具現化、試作されており、実際の電子デバイス製造として実用化される日も近いようです。

半導体製造CMP工程後の洗浄技術

ウェーハ表面を研磨により平坦化する技術を化学機械平坦化(CMP: Chemical Mechanical Planarization)といいます。

半導体製造工程の1つであるCMP技術も埋め込み→平坦化を目的とした基本的な工程は代わりませんが、最近、半導体チップの微細化・高集積化にともなう材料の変化により、平坦性や欠陥のさらなる厳しい管理が求められています。

CMPのイメージ

 

本記事ではCMP装置の変遷からはじまり、主にCMP後の洗浄(砥粒、研磨屑、有機残渣、金属不純物などの残留物を除く)方法について述べています。

CMP後の洗浄の流れと薬液と装置の位置づけ

 

半導体CMPプロセスにおける 金属腐食の電気化学解析

上述したCMPには様々なものがありますが、その中でも銅やコバルトのような金属のCMPを行う場合腐食を抑制することが重要な課題であり、そのためには電気化学解析が最も有効な手法としてもちいられます。記事では通常のpH-酸化還元電位図に腐食電流を加えた三次元図(著者らが開発・提案)を実験的に作成した例を紹介しています。

上図の深い溝になっている部分が腐食でにであり、それよりも右下(低電位側)の不活態領域では水素が発生する還元反応が起こっており、電流密度が高くても腐食は起こらない。腐食電位の左上(高電位側)の酸性側に低電流密度領域が存在し(白い領域)、実験にもちいたCMPスラリー(pH3)の腐食電流は非常に低いことがわかります。

*スラリー:CMPに使用される研磨液のこと

 有機残渣除去性を改善した新規なアルカリ性Cu-CMP後洗浄液

一番化学っぽい記事。現在Cu-CMP後洗浄プロセスで最も大きな課題である

「CMP後にウェーハ表面に残留する有機残渣除去性の改善」

を目的として、アルカリ性水溶液中での各種錯化剤の効果を調査に基づいた結果として報告しています。有機残渣にはCu防食剤として含まれている1,2,3-ベンゾトリアゾール(BTA)のようなヘテロ環がCuと作用して錯体となって安定化しているものが多いとのこと。これらに錯化剤(含窒素五員環化合物)を作用させてはがすことにより、有機残渣を除去するといったわけです。

Cu-BTA錯体除去の推定反応メカニズム

 

著者は関東化学の室長であり、関東化学でも同CMP後洗浄溶液を販売しています。関連商品を御覧ください。

関連製品

過去のケミカルタイムズ解説記事

外部リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 論文執筆で気をつけたいこと20(2)
  2. 化学ゆるキャラ大集合
  3. 生物のデザインに学ぶ-未来をひらくバイオミメティクス-に行ってき…
  4. 結晶スポンジ法から始まったミヤコシンの立体化学問題は意外な結末
  5. 添加剤でスイッチするアニリンの位置選択的C-Hアルキル化
  6. アロタケタールの全合成
  7. 2014年ノーベル賞受賞者は誰に?ートムソン・ロイター引用栄誉賞…
  8. 有機合成化学協会誌2019年7月号:ジアステレオ選択的Joull…

注目情報

ピックアップ記事

  1. Jエナジーと三菱化が鹿島製油所内に石化製品生産設備を700億円で新設
  2. 錬金術博物館
  3. 「日本化学連合」が発足、化学系学協会18団体加盟
  4. 宇部興産、MCPTや京大と共同でスワン酸化反応を室温で反応させる技術を開発
  5. アレーン類の直接的クロスカップリング
  6. カイザーテスト Kaiser Test
  7. エチレンをつかまえて
  8. 二重可変領域抗体 Dual Variable Domain Immunoglobulin
  9. ナノの世界に朗報?!-コラニュレンのkg合成-
  10. 斬新な官能基変換を可能にするパラジウム触媒

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP