[スポンサーリンク]

一般的な話題

電子デバイス製造技術 ーChemical Times特集より

[スポンサーリンク]

関東化学が発行する化学情報誌「ケミカルタイムズ」。この情報誌の紹介も完全にシリーズ化し、今回で7回目。毎度のことながらケミカルタイムズという雑誌名を超えた、幅広い分野が扱われています。

今回はタイトルにあるように、特集として「電子デバイス製造技術」にスポットをあてた4つの記事について紹介したいと思います(記事はそれぞれのタイトルをクリックしていただければ全文無料で閲覧可能です。PDFファイル)。

省資源・省エネ・超低設備コストを実現した超小型デバイス製造システム-ミニマルファブ

近年の快適生活にはなくてならない電子デバイス。これらをつくる電子デバイス工場(メガファブ)は需要加速により拡大に拡大を重ね、いまでは1ライン当たり1兆円規模の投資が必要となるそうです。ただそれだけの投資を回収できるほどの受注を得られているのはごくわずか。単一デバイスではほとんどありません。現状では1万個以下の受注が多く、そのオーダーに適した「小さな工場」が求められています。

本記事では多品種少量生産に特化した超小型製造システム「ミニマルファブ」についての概要を述べています。

電子デバイス超小型製造システム「ミニマルファブ」

 

すべてのデバイスに対応できるわけではなく一長一短ありそうですが、投資額と電力消費をメガファブの1/1000とすることを目指しています。上記の写真にあるようにすでにデバイス製造システムとして具現化、試作されており、実際の電子デバイス製造として実用化される日も近いようです。

半導体製造CMP工程後の洗浄技術

ウェーハ表面を研磨により平坦化する技術を化学機械平坦化(CMP: Chemical Mechanical Planarization)といいます。

半導体製造工程の1つであるCMP技術も埋め込み→平坦化を目的とした基本的な工程は代わりませんが、最近、半導体チップの微細化・高集積化にともなう材料の変化により、平坦性や欠陥のさらなる厳しい管理が求められています。

CMPのイメージ

 

本記事ではCMP装置の変遷からはじまり、主にCMP後の洗浄(砥粒、研磨屑、有機残渣、金属不純物などの残留物を除く)方法について述べています。

CMP後の洗浄の流れと薬液と装置の位置づけ

 

半導体CMPプロセスにおける 金属腐食の電気化学解析

上述したCMPには様々なものがありますが、その中でも銅やコバルトのような金属のCMPを行う場合腐食を抑制することが重要な課題であり、そのためには電気化学解析が最も有効な手法としてもちいられます。記事では通常のpH-酸化還元電位図に腐食電流を加えた三次元図(著者らが開発・提案)を実験的に作成した例を紹介しています。

上図の深い溝になっている部分が腐食でにであり、それよりも右下(低電位側)の不活態領域では水素が発生する還元反応が起こっており、電流密度が高くても腐食は起こらない。腐食電位の左上(高電位側)の酸性側に低電流密度領域が存在し(白い領域)、実験にもちいたCMPスラリー(pH3)の腐食電流は非常に低いことがわかります。

*スラリー:CMPに使用される研磨液のこと

 有機残渣除去性を改善した新規なアルカリ性Cu-CMP後洗浄液

一番化学っぽい記事。現在Cu-CMP後洗浄プロセスで最も大きな課題である

「CMP後にウェーハ表面に残留する有機残渣除去性の改善」

を目的として、アルカリ性水溶液中での各種錯化剤の効果を調査に基づいた結果として報告しています。有機残渣にはCu防食剤として含まれている1,2,3-ベンゾトリアゾール(BTA)のようなヘテロ環がCuと作用して錯体となって安定化しているものが多いとのこと。これらに錯化剤(含窒素五員環化合物)を作用させてはがすことにより、有機残渣を除去するといったわけです。

Cu-BTA錯体除去の推定反応メカニズム

 

著者は関東化学の室長であり、関東化学でも同CMP後洗浄溶液を販売しています。関連商品を御覧ください。

関連製品

過去のケミカルタイムズ解説記事

外部リンク

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. elements~メンデレーエフの奇妙な棚~
  2. 生体医用イメージングを志向した第二近赤外光(NIR-II)色素:…
  3. 安全性・耐久性・高活性を兼ね備えた次世代型スマート触媒の開発
  4. 化学者だって数学するっつーの! :定常状態と変数分離
  5. テトラセノマイシン類の全合成
  6. 第二回ケムステVプレミアレクチャー「重水素標識法の進歩と未来」を…
  7. 【書籍】イシューからはじめよ~知的生産のシンプルな本質~
  8. アメリカで Ph.D. を取る –エッセイを書くの巻– (後編)…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機化学者のラブコメ&ミステリー!?:「ラブ・ケミストリー」
  2. 高分子鎖を簡単に垂直に立てる -表面偏析と自己組織化による高分子ブラシ調製法-
  3. 光延反応 Mitsunobu Reaction
  4. 2010年日本化学会各賞発表-進歩賞-
  5. 合成小分子と光の力で細胞内蛋白質の局在を自在に操る!
  6. なぜ電子が非局在化すると安定化するの?【化学者だって数学するっつーの!: 井戸型ポテンシャルと曲率】
  7. わずかな末端修飾で粘度が1万倍も変わる高分子
  8. いざ、低温反応!さて、バスはどうする?〜水/メタノール混合系で、どんな温度も自由自在〜
  9. 【マイクロ波化学(株)環境/化学分野向けウェビナー】 #CO2削減 #リサイクル #液体 #固体 #薄膜 #乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ
  10. 高校生の「化学五輪」、2010年は日本で開催

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

注目情報

最新記事

セレンディピティ:思いがけない発見・発明のドラマ

hodaです。今回は1993年に刊行され、2022年7月に文庫化された書籍について書いていき…

第29回 ケムステVシンポ「論文を書こう!そして…」を開催します

コロナ禍による規制も少しずつ緩和されてきて、逆にオンライン会議が逆に少し恋しくなっている今日この頃か…

マテリアルズ・インフォマティクス活用検討・テーマ発掘の進め方 -社内促進でつまずやすいポイントや解決策を解説-

開催日:2022/08/24 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

高分子固体電解質をAIで自動設計

第406回のスポットライトリサーチは、早稲田大学 先進理工学部 応用化学科 小柳津・須賀研究室の畠山…

スクショの友 Snagit

スクリーンショット(スクショ)は、手軽に画像や図をコピーすることができ、資料作成などにおいて便利な機…

第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!

こんにちは、今回第28回Vシンポの運営&司会を務めさせていただくMacyです、よろしくお願い…

量子アルゴリズム国際ハッカソンQPARC Challengeで、で京都大学の学生チームが優勝!!

そこかしこで「量子コンピュータ」という言葉を聞くようになった昨今ですが、実際に何がどこまでできるのか…

Nature主催の動画コンペ「Science in Shorts」に応募してみました

以前のケムステ記事で、Springer Nature社が独・メルク社と共同で、動画コンペ「Scien…

クオラムセンシング阻害活性を有する新規アゾキシアルケン化合物の発見―薬剤耐性菌の出現を抑える感染症治療薬への応用に期待―

第405回のスポットライトリサーチは、広島大学大学院統合生命科学研究科 生物工学プログラム 細胞機能…

【著者インタビュー動画あり!】有機化学1000本ノック スペクトル解析編

今年4月に発売された書籍で、発売記念著者インタビュー動画も発売前に撮影したのですが、書籍の到…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP