[スポンサーリンク]

一般的な話題

電子デバイス製造技術 ーChemical Times特集より

[スポンサーリンク]

関東化学が発行する化学情報誌「ケミカルタイムズ」。この情報誌の紹介も完全にシリーズ化し、今回で7回目。毎度のことながらケミカルタイムズという雑誌名を超えた、幅広い分野が扱われています。

今回はタイトルにあるように、特集として「電子デバイス製造技術」にスポットをあてた4つの記事について紹介したいと思います(記事はそれぞれのタイトルをクリックしていただければ全文無料で閲覧可能です。PDFファイル)。

省資源・省エネ・超低設備コストを実現した超小型デバイス製造システム-ミニマルファブ

近年の快適生活にはなくてならない電子デバイス。これらをつくる電子デバイス工場(メガファブ)は需要加速により拡大に拡大を重ね、いまでは1ライン当たり1兆円規模の投資が必要となるそうです。ただそれだけの投資を回収できるほどの受注を得られているのはごくわずか。単一デバイスではほとんどありません。現状では1万個以下の受注が多く、そのオーダーに適した「小さな工場」が求められています。

本記事では多品種少量生産に特化した超小型製造システム「ミニマルファブ」についての概要を述べています。

電子デバイス超小型製造システム「ミニマルファブ」

 

すべてのデバイスに対応できるわけではなく一長一短ありそうですが、投資額と電力消費をメガファブの1/1000とすることを目指しています。上記の写真にあるようにすでにデバイス製造システムとして具現化、試作されており、実際の電子デバイス製造として実用化される日も近いようです。

半導体製造CMP工程後の洗浄技術

ウェーハ表面を研磨により平坦化する技術を化学機械平坦化(CMP: Chemical Mechanical Planarization)といいます。

半導体製造工程の1つであるCMP技術も埋め込み→平坦化を目的とした基本的な工程は代わりませんが、最近、半導体チップの微細化・高集積化にともなう材料の変化により、平坦性や欠陥のさらなる厳しい管理が求められています。

CMPのイメージ

 

本記事ではCMP装置の変遷からはじまり、主にCMP後の洗浄(砥粒、研磨屑、有機残渣、金属不純物などの残留物を除く)方法について述べています。

CMP後の洗浄の流れと薬液と装置の位置づけ

 

半導体CMPプロセスにおける 金属腐食の電気化学解析

上述したCMPには様々なものがありますが、その中でも銅やコバルトのような金属のCMPを行う場合腐食を抑制することが重要な課題であり、そのためには電気化学解析が最も有効な手法としてもちいられます。記事では通常のpH-酸化還元電位図に腐食電流を加えた三次元図(著者らが開発・提案)を実験的に作成した例を紹介しています。

上図の深い溝になっている部分が腐食でにであり、それよりも右下(低電位側)の不活態領域では水素が発生する還元反応が起こっており、電流密度が高くても腐食は起こらない。腐食電位の左上(高電位側)の酸性側に低電流密度領域が存在し(白い領域)、実験にもちいたCMPスラリー(pH3)の腐食電流は非常に低いことがわかります。

*スラリー:CMPに使用される研磨液のこと

 有機残渣除去性を改善した新規なアルカリ性Cu-CMP後洗浄液

一番化学っぽい記事。現在Cu-CMP後洗浄プロセスで最も大きな課題である

「CMP後にウェーハ表面に残留する有機残渣除去性の改善」

を目的として、アルカリ性水溶液中での各種錯化剤の効果を調査に基づいた結果として報告しています。有機残渣にはCu防食剤として含まれている1,2,3-ベンゾトリアゾール(BTA)のようなヘテロ環がCuと作用して錯体となって安定化しているものが多いとのこと。これらに錯化剤(含窒素五員環化合物)を作用させてはがすことにより、有機残渣を除去するといったわけです。

Cu-BTA錯体除去の推定反応メカニズム

 

著者は関東化学の室長であり、関東化学でも同CMP後洗浄溶液を販売しています。関連商品を御覧ください。

関連製品

過去のケミカルタイムズ解説記事

外部リンク

The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. スタニルリチウム調製の新手法
  2. 最長のヘリセンをつくった
  3. みんなーフィラデルフィアに行きたいかー!
  4. E. J. Corey からの手紙
  5. システインの位置選択的修飾を実現する「π-クランプ法」
  6. 2017年12月14日開催: 化学企業4社によるプレミアムセミナ…
  7. ガン細胞を掴んで離さない分子の開発
  8. アレクセイ・チチバビン ~もうひとりのロシア有機化学の父~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【書籍】液晶の歴史
  2. 大麻複合物が乳がんの転移抑止効果―米医療チームが発見
  3. 「ねるねるねるね」はなぜ色が変わって膨らむのか?
  4. クレイグ・クルーズ Craig M. Crews
  5. 多孔性材料の動的核偏極化【生体分子の高感度MRI観測への一歩】
  6. コーリー・チャイコフスキー反応 Corey-Chaykovsky Reaction
  7. 創薬人育成サマースクール2019(関東地区) ~くすりを創る研究の醍醐味を知る!~
  8. 一重項励起子開裂を利用した世界初の有機EL素子
  9. ボールドウィン則 Baldwin’s Rule
  10. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー

関連商品

注目情報

注目情報

最新記事

勤務地にこだわり理想も叶える!転職に成功したエンジニアの話

総合職であれば、本社以外の勤務や転勤を職務の一貫として、身近なものとして考えられる方は多いのではない…

決算短信~日本触媒と三洋化成の合併に関連して~

投資家でなければ関係ないと思われがちな決算短信ですが、実は企業のいろいろな情報が正直に書いてある書類…

複雑にインターロックした自己集合体の形成機構の解明

第199回のスポットライトリサーチは、東京大学総合文化研究科(平岡研究室)博士課程・立石友紀さんにお…

小型質量分析装置expression® CMSを試してみた

学生が増えすぎて(うれしい悲鳴ですが)、機器を購入する余裕などこれっぽっちもない代表です。さ…

有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング

有機合成化学協会が発行する有機合成化学協会誌、2019年6月号がオンライン公開されました。梅…

東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀

概要不確実な時代を生き抜くキャリアを創るには? 各界で活躍する東大OB・OGが、学生生活や就…

Chem-Station Twitter

PAGE TOP