[スポンサーリンク]

一般的な話題

電子デバイス製造技術 ーChemical Times特集より

[スポンサーリンク]

関東化学が発行する化学情報誌「ケミカルタイムズ」。この情報誌の紹介も完全にシリーズ化し、今回で7回目。毎度のことながらケミカルタイムズという雑誌名を超えた、幅広い分野が扱われています。

今回はタイトルにあるように、特集として「電子デバイス製造技術」にスポットをあてた4つの記事について紹介したいと思います(記事はそれぞれのタイトルをクリックしていただければ全文無料で閲覧可能です。PDFファイル)。

省資源・省エネ・超低設備コストを実現した超小型デバイス製造システム-ミニマルファブ

近年の快適生活にはなくてならない電子デバイス。これらをつくる電子デバイス工場(メガファブ)は需要加速により拡大に拡大を重ね、いまでは1ライン当たり1兆円規模の投資が必要となるそうです。ただそれだけの投資を回収できるほどの受注を得られているのはごくわずか。単一デバイスではほとんどありません。現状では1万個以下の受注が多く、そのオーダーに適した「小さな工場」が求められています。

本記事では多品種少量生産に特化した超小型製造システム「ミニマルファブ」についての概要を述べています。

電子デバイス超小型製造システム「ミニマルファブ」

 

すべてのデバイスに対応できるわけではなく一長一短ありそうですが、投資額と電力消費をメガファブの1/1000とすることを目指しています。上記の写真にあるようにすでにデバイス製造システムとして具現化、試作されており、実際の電子デバイス製造として実用化される日も近いようです。

半導体製造CMP工程後の洗浄技術

ウェーハ表面を研磨により平坦化する技術を化学機械平坦化(CMP: Chemical Mechanical Planarization)といいます。

半導体製造工程の1つであるCMP技術も埋め込み→平坦化を目的とした基本的な工程は代わりませんが、最近、半導体チップの微細化・高集積化にともなう材料の変化により、平坦性や欠陥のさらなる厳しい管理が求められています。

CMPのイメージ

 

本記事ではCMP装置の変遷からはじまり、主にCMP後の洗浄(砥粒、研磨屑、有機残渣、金属不純物などの残留物を除く)方法について述べています。

CMP後の洗浄の流れと薬液と装置の位置づけ

 

半導体CMPプロセスにおける 金属腐食の電気化学解析

上述したCMPには様々なものがありますが、その中でも銅やコバルトのような金属のCMPを行う場合腐食を抑制することが重要な課題であり、そのためには電気化学解析が最も有効な手法としてもちいられます。記事では通常のpH-酸化還元電位図に腐食電流を加えた三次元図(著者らが開発・提案)を実験的に作成した例を紹介しています。

上図の深い溝になっている部分が腐食でにであり、それよりも右下(低電位側)の不活態領域では水素が発生する還元反応が起こっており、電流密度が高くても腐食は起こらない。腐食電位の左上(高電位側)の酸性側に低電流密度領域が存在し(白い領域)、実験にもちいたCMPスラリー(pH3)の腐食電流は非常に低いことがわかります。

*スラリー:CMPに使用される研磨液のこと

 有機残渣除去性を改善した新規なアルカリ性Cu-CMP後洗浄液

一番化学っぽい記事。現在Cu-CMP後洗浄プロセスで最も大きな課題である

「CMP後にウェーハ表面に残留する有機残渣除去性の改善」

を目的として、アルカリ性水溶液中での各種錯化剤の効果を調査に基づいた結果として報告しています。有機残渣にはCu防食剤として含まれている1,2,3-ベンゾトリアゾール(BTA)のようなヘテロ環がCuと作用して錯体となって安定化しているものが多いとのこと。これらに錯化剤(含窒素五員環化合物)を作用させてはがすことにより、有機残渣を除去するといったわけです。

Cu-BTA錯体除去の推定反応メカニズム

 

著者は関東化学の室長であり、関東化学でも同CMP後洗浄溶液を販売しています。関連商品を御覧ください。

関連製品

過去のケミカルタイムズ解説記事

外部リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. とあるカレイラの天然物〜Pallambins〜
  2. ジアゾニウム塩が開始剤と捕捉剤を“兼務”する
  3. ナノの世界に朗報?!-コラニュレンのkg合成-
  4. 【書籍】クロスカップリング反応 基礎と産業応用
  5. 反応がうまくいかないときは冷やしてみてはいかが?
  6. リボフラビンを活用した光触媒製品の開発
  7. ケムステも出ます!サイエンスアゴラ2013
  8. 学術変革領域(B)「糖化学ノックイン」発足!

注目情報

ピックアップ記事

  1. 水が決め手!構造が変わる超分子ケージ
  2. “加熱しない”短時間窒化プロセスの開発 -チタン合金の多機能化を目指して-
  3. 化学大手、原油高で原料多様化・ナフサ依存下げる
  4. 白血病治療新薬の候補物質 京大研究グループと日本新薬が開発
  5. 化学プラントにおけるAI活用事例
  6. 第123回―「遺伝暗号を拡張して新しいタンパク質を作る」Nick Fisk教授
  7. “アルデヒドを移し替える”新しいオレフィン合成法
  8. 究極のナノデバイスへ大きな一歩:分子ワイヤ中の高速電子移動
  9. 648個の誘導体を合成!ペプチド創薬の新手法を開発
  10. 中村 浩之 Hiroyuki NAKAMURA

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

インドの農薬市場と各社の事業戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、インド…

【味の素ファインテクノ】新卒採用情報(2027卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。…

味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します

食品会社として知られる味の素社ですが、味の素ファインテクノ社はその味の素グループ…

味の素ファインテクノ社の技術と社会貢献

味の素ファインテクノ社は、電子材料の分野において独創的な製品を開発し、お客様の中にイノベーションを起…

サステナブル社会の実現に貢献する新製品開発

味の素ファインテクノ社が開発し、これから事業に発展して、社会に大きく貢献する製品…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP