[スポンサーリンク]

一般的な話題

スポンジシリーズがアップデートされました。

ケムステ読者の方々の多くはプロトンスポンジ®(メルクアルドリッチの商標)(Wikipediaにリンク)なるものを聞いたことがあると思います。1,8‐ビス(ジメチルアミノ)ナフタレンは、近接した2つのアミノ基によってプロトンを強く捕捉する能力をもっています。このような効果から『プロトンスポンジ』と呼ばれています。同様のコンセプトをもとに、『ヒドリドスポンジ』なる1,8-ナフタレンジイルビス(ジメチルボラン)も開発されております。こちらは、近接した2つのボリル基がヒドリドを強く捕捉できる能力をもった分子になります。

さて、今回はそのスポンジシリーズに新たなものが加わりました。その名も『シアニドスポンジ』、そして『ヒドラジンスポンジ』です。その名の通りシアニド(CN)もしくはヒドラジン(N2H4)を強く補足する能力をもった分子です。少し前の論文にはなりますが、以下に詳細を述べたいと思います。

”Large-bite diboranes for the μ(1,2) complexation of hydrazine and cyanide”

Chena C.-H.; Gabbaï, F. P. Chem. Sci. 2018, 9, 6210-6218 , DOI: 10.1039/c8sc01877d

論文の概要

テキサスA&M大学のGabbaï教授らは、シアニドもしくはヒドラジンを強く捕捉する分子である『シアニドスポンジ』もしくは『ヒドラジンスポンジ』を合成した。具体的には図1に示した2つの構造をもった化合物である。

  1. ビフェニレンの1,8位に2つのジメスチルボランを持った構造のホスト性化合物1
  2. トリプチセンの1,8位に2つのジメスチルボランを持った構造のホスト性化合物2

図1. プロトンスポンジ、ヒドリドスポンジ、および本論文にて合成されたスポンジ分子

これらの化合物は、ゲスト分子としてシアニドアニオンもしくはヒドラジンを強く捕捉する能力をもったホスト性分子である。また、この捕捉現象は選択性に富み、炭酸水素アニオン, 硫酸水素アニオン,リン酸二水素アニオン、酢酸アニオン、ハロゲン化物アニオン、アジ化物アニオンに対する捕捉は全く起きない。これらの捕捉状態をNMRスペクトル、UV-vis吸収スペクトル、FLスペクトル、IRスペクトルおよび単結晶X線構造解析などによって解析した。

本研究の技術的なキモ

図2. ホスト分子1および2の構造と、2の単結晶X線構造解析の結果

  1. 電子親和性の高いホウ素原子を適切な距離(4.566 ~ 5.559 Å)に配置したこと
  2. 剛直な骨格(ビフェニレン、トリプチセン)を持つこと

図3. 1および2のヒドラジン(A)もしくはシアニド(B)との反応

上記の特徴を持つ結果、ホスト分子1もしくは2は、シアニドもしくはヒドラジンを選択的かつ1:1で捕捉できる。

有効性の検証

著者らは『ホスト分子1もしくは2が、シアニドもしくはヒドラジンを選択的かつ1:1で捕捉できること』について、固体状態での捕捉現象をIRスペクトルおよび単結晶X構造解析によって解析した。例えば[2-CN]が生成する場合には:

  • IRスペクトルによって、[2-CN]でνCN = 2184 cm-1の振動を観測した。KCN(νCN = 2158 cm-1)と比較して、シアニドの振動エネルギーが大きくなった。これはシアノボラン錯体に典型的な変化であり、錯形成によるπ軌道の安定化が寄与している。(詳しくは論文中引用を参照)
  • 単結晶X線構造解析によれば、シアニドをμ(1,2)型キレート構造で捕捉しており、かつ1:1錯体をつくっていることがわかった。シアニドの向きは左右でディスオーダーしていた。

図4. 捕捉した錯体の単結晶X線構造解析の結果

著者らはNMRスペクトル、UV-vis吸収スペクトルもしくはFLスペクトルを用いて、溶液状態での捕捉現象を解析している。例えば1とヒドラジンが反応し、12-N2H4が生成する場合には:

  • 1H NMRスペクトルにおいて、メシチレンのメチル基が6本観測され、かつB-NH2-NH2-BのシグナルがAA’BB’パターンを示すことから、C2対称型の錯体が生成していることを帰属した。
  • 吸収スペクトルから波形の変化を観測した。特に長波長側での新たなピークを観測した。
  • 蛍光スペクトルから錯形成に伴った蛍光発光の消光を観測した。1では528 nm 、φF = 0.05の発光を示すが、12-N2H4では完全に消光し、蛍光発光を観測できなかった。

その他のアニオンでの捕捉を各種スペクトルにて解析したが、炭酸水素アニオン, 硫酸水素アニオン,リン酸二水素アニオン、酢酸アニオン、ハロゲン化物アニオン、アジ化物アニオンに対する捕捉は全く起きなかった。すなわち、ホスト性分子1もしくは2は選択性良くシアニドもしくはヒドラジンを補足する。

先行研究との比較

ホスト分子1もしくはホスト分子2『ある程度長いホウ素-ホウ素間距離(>4.50 Å)をもち、かつ剛直な構造をもつこと』が、先行研究とのもっとも大きな差である。

先行研究においても、いくらかのヒドリド、シアニドもしくはヒドラジンを捕捉するジボラン型ホスト化合物(もしくは二核金属錯体など)が合成されてきた。先行技術と比較すると、ホウ素-ホウ素間の距離と構造の剛直さに大きな差があり、その結果として捕捉できる分子とその様式には差があった。先行研究におけるホスト分子は以下の2種類に分類できる:

  1. 比較的短いホウ素-ホウ素間の距離(3.00 ~ 3.38 Å程度)をもち、かつ剛直な骨格を持つ場合には、単原子(ヒドリドなど)~小さい二原子分子までを補足することができる。
  2. 比較的長いホウ素-ホウ素間の距離を持つ場合、剛直でない構造が共存しており、ホウ素-ホウ素間(もしくは金属−金属間)の距離が規定できないものが多い。比較的大きい二原子分子を捕捉できるが、ホスト:ゲストが1:1にならない場合も多い。

これらの2点を克服した長いホウ素-ホウ素間距離と剛直な骨格の両立が、既存技術と本研究の最大の差異であり、その結果としてヒドラジンのような2原子以上の分子を強固に捕捉できるものができた。

議論の余地

シアニドやヒドラジンを捕捉した化合物郡([12-CN]、[2-CN]12-N2H4および2-N2H4)の反応性に関する議論が不十分である。補足したシアニドもしくはヒドラジンがどのような反応性を持っているのかという点の議論がまだ発展途上である。これらの点が明らかになれば、より汎用性の高いシアン化、アミド化もしくはジアゾ化などの試薬となるかもしれない。

本論文中では、12-N2H4もしくは2-N2H4が空気や水に安定であることが検証されている。さらには加熱した場合に、ヒドラジンの放出を確認しており、ベンズアルデヒドと反応を起こすことが述べられている。今後、汎用性の高い試薬への昇華を期待する。

著者の紹介

研究者:François Gabbaï (テキサスA&M大学)

経歴:

1994年:Ph. D., University of Texas at Austin
1994-1996年:Alexander von Humboldt Postdoctoral Fellow, Technical University of Munich
1996-1998年:European Community Research Fellow (Habilitation),Technical University of Munich

受賞歴など:

2016年:F. Albert Cotton Award in Synthetic Inorganic Chemistry
2016年から現在まで:Editorial Board Member of Chemistry Select
2016年から現在まで:Editorial Board Member of Chem
2013年から現在まで:Member of the Inorganic Syntheses board
2013年:Fellow of the Royal Society of Chemistry
2011年から現在まで:Associate Editor for Organometallics
2011年:Fellows of the American Chemical Society
2009年:Dalton Transactions North American Lectureship
2001年:NSF CAREER Award
1996年:TMR European Commission Research Fellow
1994年:Alexander von Humbodlt Fellow
研究内容:

ルイス酸‐塩基相互作用を巧みに利用した研究を展開している。新たなルイス酸もしくはルイス塩基性化合物の開発、フラストレイテッド・ルイスペアの開発、アンチモン含有配位子の開発などをおこなっている。

関連書籍

関連リンク

 

The following two tabs change content below.
Trogery12

Trogery12

博士(工学)。ポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. ここまで来たか、科学技術
  2. 【詳説】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  3. Wiley社の本が10%割引キャンペーン中~Amazon~
  4. ChemDrawの使い方【作図編③:表】
  5. メチオニン選択的なタンパク質修飾反応
  6. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  7. 効率的に新薬を生み出すLate-Stage誘導体化反応の開発
  8. 私が思う化学史上最大の成果-1

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 研究室クラウド設立のススメ(導入編)
  2. 炭素を1つスズに置き換えてみたらどうなる?
  3. 大阪大学インタラクティブ合宿セミナーに参加しました
  4. コーリー・ウィンターオレフィン合成 Corey-Winter Olefin Synthesis
  5. ルィセンコ騒動のはなし(前編)
  6. 触媒的芳香族求核置換反応
  7. 【書籍】クロスカップリング反応 基礎と産業応用
  8. ジ-π-メタン転位 Di-π-methane Rearrangement
  9. ショウガに含まれる辛味成分
  10. メタンハイドレートの化学

関連商品

注目情報

注目情報

最新記事

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

アントニオ・M・エチャヴァレン Antonio M. Echavarren

アントニオ・M・エチャヴァレン(Antonio M. Echavarren、1955年3月25日–)…

PAGE TOP