[スポンサーリンク]

一般的な話題

スポンジシリーズがアップデートされました。

[スポンサーリンク]

ケムステ読者の方々の多くはプロトンスポンジ®(メルクアルドリッチの商標)(Wikipediaにリンク)なるものを聞いたことがあると思います。1,8‐ビス(ジメチルアミノ)ナフタレンは、近接した2つのアミノ基によってプロトンを強く捕捉する能力をもっています。このような効果から『プロトンスポンジ』と呼ばれています。同様のコンセプトをもとに、『ヒドリドスポンジ』なる1,8-ナフタレンジイルビス(ジメチルボラン)も開発されております。こちらは、近接した2つのボリル基がヒドリドを強く捕捉できる能力をもった分子になります。

さて、今回はそのスポンジシリーズに新たなものが加わりました。その名も『シアニドスポンジ』、そして『ヒドラジンスポンジ』です。その名の通りシアニド(CN)もしくはヒドラジン(N2H4)を強く補足する能力をもった分子です。少し前の論文にはなりますが、以下に詳細を述べたいと思います。

”Large-bite diboranes for the μ(1,2) complexation of hydrazine and cyanide”

Chena C.-H.; Gabbaï, F. P. Chem. Sci. 2018, 9, 6210-6218 , DOI: 10.1039/c8sc01877d

論文の概要

テキサスA&M大学のGabbaï教授らは、シアニドもしくはヒドラジンを強く捕捉する分子である『シアニドスポンジ』もしくは『ヒドラジンスポンジ』を合成した。具体的には図1に示した2つの構造をもった化合物である。

  1. ビフェニレンの1,8位に2つのジメスチルボランを持った構造のホスト性化合物1
  2. トリプチセンの1,8位に2つのジメスチルボランを持った構造のホスト性化合物2

図1. プロトンスポンジ、ヒドリドスポンジ、および本論文にて合成されたスポンジ分子

これらの化合物は、ゲスト分子としてシアニドアニオンもしくはヒドラジンを強く捕捉する能力をもったホスト性分子である。また、この捕捉現象は選択性に富み、炭酸水素アニオン, 硫酸水素アニオン,リン酸二水素アニオン、酢酸アニオン、ハロゲン化物アニオン、アジ化物アニオンに対する捕捉は全く起きない。これらの捕捉状態をNMRスペクトル、UV-vis吸収スペクトル、FLスペクトル、IRスペクトルおよび単結晶X線構造解析などによって解析した。

本研究の技術的なキモ

図2. ホスト分子1および2の構造と、2の単結晶X線構造解析の結果

  1. 電子親和性の高いホウ素原子を適切な距離(4.566 ~ 5.559 Å)に配置したこと
  2. 剛直な骨格(ビフェニレン、トリプチセン)を持つこと

図3. 1および2のヒドラジン(A)もしくはシアニド(B)との反応

上記の特徴を持つ結果、ホスト分子1もしくは2は、シアニドもしくはヒドラジンを選択的かつ1:1で捕捉できる。

有効性の検証

著者らは『ホスト分子1もしくは2が、シアニドもしくはヒドラジンを選択的かつ1:1で捕捉できること』について、固体状態での捕捉現象をIRスペクトルおよび単結晶X構造解析によって解析した。例えば[2-CN]が生成する場合には:

  • IRスペクトルによって、[2-CN]でνCN = 2184 cm-1の振動を観測した。KCN(νCN = 2158 cm-1)と比較して、シアニドの振動エネルギーが大きくなった。これはシアノボラン錯体に典型的な変化であり、錯形成によるπ軌道の安定化が寄与している。(詳しくは論文中引用を参照)
  • 単結晶X線構造解析によれば、シアニドをμ(1,2)型キレート構造で捕捉しており、かつ1:1錯体をつくっていることがわかった。シアニドの向きは左右でディスオーダーしていた。

図4. 捕捉した錯体の単結晶X線構造解析の結果

著者らはNMRスペクトル、UV-vis吸収スペクトルもしくはFLスペクトルを用いて、溶液状態での捕捉現象を解析している。例えば1とヒドラジンが反応し、12-N2H4が生成する場合には:

  • 1H NMRスペクトルにおいて、メシチレンのメチル基が6本観測され、かつB-NH2-NH2-BのシグナルがAA’BB’パターンを示すことから、C2対称型の錯体が生成していることを帰属した。
  • 吸収スペクトルから波形の変化を観測した。特に長波長側での新たなピークを観測した。
  • 蛍光スペクトルから錯形成に伴った蛍光発光の消光を観測した。1では528 nm 、φF = 0.05の発光を示すが、12-N2H4では完全に消光し、蛍光発光を観測できなかった。

その他のアニオンでの捕捉を各種スペクトルにて解析したが、炭酸水素アニオン, 硫酸水素アニオン,リン酸二水素アニオン、酢酸アニオン、ハロゲン化物アニオン、アジ化物アニオンに対する捕捉は全く起きなかった。すなわち、ホスト性分子1もしくは2は選択性良くシアニドもしくはヒドラジンを補足する。

先行研究との比較

ホスト分子1もしくはホスト分子2『ある程度長いホウ素-ホウ素間距離(>4.50 Å)をもち、かつ剛直な構造をもつこと』が、先行研究とのもっとも大きな差である。

先行研究においても、いくらかのヒドリド、シアニドもしくはヒドラジンを捕捉するジボラン型ホスト化合物(もしくは二核金属錯体など)が合成されてきた。先行技術と比較すると、ホウ素-ホウ素間の距離と構造の剛直さに大きな差があり、その結果として捕捉できる分子とその様式には差があった。先行研究におけるホスト分子は以下の2種類に分類できる:

  1. 比較的短いホウ素-ホウ素間の距離(3.00 ~ 3.38 Å程度)をもち、かつ剛直な骨格を持つ場合には、単原子(ヒドリドなど)~小さい二原子分子までを補足することができる。
  2. 比較的長いホウ素-ホウ素間の距離を持つ場合、剛直でない構造が共存しており、ホウ素-ホウ素間(もしくは金属−金属間)の距離が規定できないものが多い。比較的大きい二原子分子を捕捉できるが、ホスト:ゲストが1:1にならない場合も多い。

これらの2点を克服した長いホウ素-ホウ素間距離と剛直な骨格の両立が、既存技術と本研究の最大の差異であり、その結果としてヒドラジンのような2原子以上の分子を強固に捕捉できるものができた。

議論の余地

シアニドやヒドラジンを捕捉した化合物郡([12-CN]、[2-CN]12-N2H4および2-N2H4)の反応性に関する議論が不十分である。補足したシアニドもしくはヒドラジンがどのような反応性を持っているのかという点の議論がまだ発展途上である。これらの点が明らかになれば、より汎用性の高いシアン化、アミド化もしくはジアゾ化などの試薬となるかもしれない。

本論文中では、12-N2H4もしくは2-N2H4が空気や水に安定であることが検証されている。さらには加熱した場合に、ヒドラジンの放出を確認しており、ベンズアルデヒドと反応を起こすことが述べられている。今後、汎用性の高い試薬への昇華を期待する。

著者の紹介

研究者:François Gabbaï (テキサスA&M大学)

経歴:

1994年:Ph. D., University of Texas at Austin
1994-1996年:Alexander von Humboldt Postdoctoral Fellow, Technical University of Munich
1996-1998年:European Community Research Fellow (Habilitation),Technical University of Munich

受賞歴など:

2016年:F. Albert Cotton Award in Synthetic Inorganic Chemistry
2016年から現在まで:Editorial Board Member of Chemistry Select
2016年から現在まで:Editorial Board Member of Chem
2013年から現在まで:Member of the Inorganic Syntheses board
2013年:Fellow of the Royal Society of Chemistry
2011年から現在まで:Associate Editor for Organometallics
2011年:Fellows of the American Chemical Society
2009年:Dalton Transactions North American Lectureship
2001年:NSF CAREER Award
1996年:TMR European Commission Research Fellow
1994年:Alexander von Humbodlt Fellow
研究内容:

ルイス酸‐塩基相互作用を巧みに利用した研究を展開している。新たなルイス酸もしくはルイス塩基性化合物の開発、フラストレイテッド・ルイスペアの開発、アンチモン含有配位子の開発などをおこなっている。

関連書籍

関連リンク

 

Trogery12

投稿者の記事一覧

博士(工学)。九州でポスドク中。専門は有機金属化学、超分子合成、反応開発。趣味は散策。興味は散漫。つれづれなるままにつらつらと書いていきます。よろしくお願いします。

関連記事

  1. SNS予想で盛り上がれ!2022年ノーベル化学賞は誰の手に?
  2. 【書籍】「ルールを変える思考法」から化学的ビジネス理論を学ぶ
  3. 不均一系触媒を電極として用いる電解フロー反応を実現
  4. 令和4年度(2022年度)リンダウ・ノーベル賞受賞者会議派遣事業…
  5. 薬剤師国家試験にチャレンジ!【有機化学編その2】
  6. 第97回 触媒化学融合研究センター講演会に参加してみた
  7. 合成化学者十訓
  8. オンライン会議に最適なオーディオ機器比較~最も聞き取りやすい機器…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学者のためのエレクトロニクス講座~次世代配線技術編
  2. アンモニアがふたたび世界を変える ~第2次世界大戦中のとある出来事~
  3. リビングラジカル重合による高分子材料合成技術【終了】
  4. 昭和電工、異種材接合技術を開発
  5. カール−ヘインツ・アルトマン Karl Heinz Altmann
  6. コーリー・フックス アルキン合成 Corey-Fuchs Alkyne Synthesis
  7. 加藤 昌子 Kato Masako
  8. 生越 友樹 Tomoki Ogoshi
  9. 高い発光性を示すヘリセンの迅速的合成
  10. クリスティーナ・ホワイト M. Christina White

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP