[スポンサーリンク]

A

(古典的)アルドール反応 (Classical) Aldol Reaction

[スポンサーリンク]


概要

カルボニル化合物から生じるエノラートもしくはエノール種がアルデヒド/ケトンへと求核攻撃し、炭素-炭素結合を形成しつつβ-ヒドロキシケトン(アルドール)を与える反応。Brönsted酸/塩基触媒存在下の加熱条件が古典的条件として用いられる。

得られたアルドール体を脱水させると、α,β-不飽和ケトンが生成する(アルドール縮合)。

 

開発の歴史

ロシアの作曲家兼化学者であるアレクサンドル・ボロディンによって開発されたとされる。

アレクサンドル・ボロディン

アレクサンドル・ボロディン

基本文献

・Kane, R. J. Prakt. Chem. 183815, 129.
・Kane, R. Ann. Phys. Chem. Ser. 2 183844, 475.

<review>

・Mukaiyama, T. Org. React. 1982, 28, 203. DOI: 10.1002/0471264180.or028.03
・Heathcock, C. H. Comprehensive Organic Synthesis 1991, 133.
・Machajewski, T. D.; Wong, C.-H. Angew. Chem. Int. Ed. 2000, 39, 1352.
[abstract]
・Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Eur. J. 20028, 36. [abstract]
・Mahrwald, R. ed. Modern Aldol Reactions Wiley-VCH, 2004.
・Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65. DOI: 10.1039/b202901d
・Schetter, B.; Mahrwald, R. Angew. Chem. Int. Ed. 200645, 7506. doi:10.1002/anie.200602780

反応機構

すべての過程は平衡・可逆である。逆反応を特にレトロアルドール反応と呼ぶ。主生成物は化合物の熱力学的安定性によって決まり、収率は用いる基質に大きく依存する。厳密な立体制御は通常難しい。さらに、さまざまな副生成物(脱水体、自己縮合体など)が副生するため、望みの化合物だけを狙って得るには工夫が必要になる。

aldol_2

反応例

シリルエノラートを経由せずに交差アルドール反応を行う条件(直接的アルドール反応)にて立体制御が可能になれば、アトムエコノミー的観点からも意義が大きく、有用な反応となる。柴崎らは、ランタノイド-アルカリ金属複合型触媒を用いる世界初の直接的触媒的不斉アルドール反応を開発している。[1]
aldol_3.gif
触媒量のプロリンによる直接的触媒的不斉アルドール反応がList,Barbasらによって達成[2]され、現在の有機分子触媒研究の火付けとなった(List-Barbasアルドール反応)。
aldol_4.gif

エナミンを経由する分子内アルドール反応は全合成にも良く用いられる。以下は(-)-Calyciphylline Nの合成における適用例。[3]

aldol_3

実験手順

実験のコツ・テクニック

関連動画

参考文献

[1] (a) Yamada,Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Angew. Chem. Int. Ed. Engl. 1997, 36, 1871. doi:10.1002/anie.199718711 (b) Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168. DOI: 10.1021/ja990031y
[2] (a) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395. DOI: 10.1021/ja994280y (b) Notz, W.; List, B. J. Am. Chem. Soc. 2000122, 7386. DOI: 10.1021/ja001460v (c) List, B.; Pojarliev, P.; Castello, C. Org. Lett. 20013, 573. DOI: 10.1021/ol006976y (d) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III J. Am. Chem. Soc. 2001, 123, 5260. DOI: 10.1021/ja010037z
[3] Shvartsbart, A.; Smith, A. B., III  J. Am. Chem. Soc. 2014, 136, 870. DOI: 10.1021/ja411539w

 

関連反応

 

関連書籍

 

外部リンク

関連記事

  1. 有機亜鉛試薬 Organozinc Reagent
  2. ボロン酸の保護基 Protecting Groups for B…
  3. コーリー・キム酸化 Corey-Kim Oxidation
  4. バートン反応 Barton Reaction
  5. ジアゾメタン diazomethane
  6. ロッセン転位 Lossen Rearrangement
  7. マンダー試薬 Mander’s Reagent
  8. 奈良坂・プラサード還元 Narasaka-Prasad Redu…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. シビれる(T T)アジリジン合成
  2. アルキン来ぬと目にはさやかに見えねども
  3. 【第14回Vシンポ特別企画】講師紹介:宮島 大吾 先生
  4. 元素紀行
  5. 超臨界流体 Supercritical Fluid
  6. 特許資産規模ランキング トップ3は富士フイルム、LG CHEM、住友化学
  7. 有機スペクトル解析ワークブック
  8. 住友化学、イスラエルのスタートアップ企業へ出資 ~においセンサーを活用した新規ヘルスケア事業の創出~
  9. ChemDrawの使い方【作図編②:触媒サイクル】
  10. 第63回―「生物のコミュニケーションを司る天然物化学」矢島 新 教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎

開催日:2022/11/30  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

製薬系企業研究者との懇談会

日本薬学会医薬化学部会にある創薬ニューフロンティア(NF)検討会は,「学生のモチベーションやキャリア…

電子1個の精度で触媒ナノ粒子の電荷量を計測

第443回のスポットライトリサーチは、九州大学大学院工学研究院エネルギー量子工学部門 超顕微解析研究…

ハットする間にエピメリ化!Pleurotinの形式合成

天然物Pleurotinの形式合成が報告された。可視光による光エノール化/Diels–Alder反応…

【ジーシー】新卒採用情報(2024卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

【書評】科学実験でスラスラわかる! 本当はおもしろい 中学入試の理科

大和書房さんより 2022年9月に刊行された『科学実験でスラスラわかる!…

たったひとつのたんぱく質分子のリン酸化を検出する新手法を開発

第442回のスポットライトリサーチは、東京工業大学 理学院化学系(西野研究室)に所属されていた原島 …

第34回ケムステVシンポ「日本のクリックケミストリー」を開催します!

2022年のノーベル化学賞は「クリックケミストリーと生体直交化学」の開発業績で、バリー・シャープ…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP