[スポンサーリンク]

化学者のつぶやき

アンモニアを用いた環境調和型2級アミド合成

[スポンサーリンク]

アンモニアを窒素源として、ベンジルアルコールを用いた脱水素カップリングによる、アミドの合成に成功した。化学量論量の塩基により、イミンではなく選択的に2級アミドを合成できる

アミド合成法

アミドはポリマー、生物活性物質や医薬品合成に広く用いられるため、効率的なアミド合成法開発の波及効果は多岐にわたる。

頻用されるアミド合成法は、縮合剤を用いるカルボン酸とアミンとの脱水縮合だが、この手法では多量の共生成物の排出は避けられない(図1A)[1]

原子効率に優れる手法として、2007年にMilsteinらがピンサー型Ru触媒を用いて、アルコールとアミンの脱水素カップリングによるアミド合成を報告した(図1B)[2]。ピンサー型金属触媒をはじめて脱水素カップリングに用いたことが反応の鍵であった。

この反応が報告されて以降、様々なピンサー型金属触媒を用いたアミドの合成が報告されてきた。2009年には、Grützmacherらがピンサー型Rh触媒を用いてアルコールとアンモニアから一級アミド合成法を開発した(図1C)[3]。しかし、窒素源をアンモニアとした手法はこの反応のみである上に、触媒に貴金属を用いるという課題があった。卑金属を触媒とするアミド化として、Mn触媒によるアミド合成法も知られる(図1B)。しかしアルコールとアミンを用いた合成法であり、窒素源にアンモニアを用いることはできていなかった。
今回、Milsteinらはピンサー型Mn触媒1を用いて、アルコールとアンモニアの脱水素カップリングにより2級アミドを合成することに成功した(図1D)。反応の鍵は、化学量論量の塩基を用いることであった。

図1. (A) 縮合剤を用いたアミド合成 (B) 脱水素カップリングによるアミド合成 (C) NH3を用いた1級アミド合成 (D) 今回の反応

 

 Direct Synthesis of Amides by Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and Ammonia Catalyzed by a Manganese Pincer Complex: Unexpected Crucial Role of Base

Daw, P.; Kumar, A.; Espinosa-Jalapa, N. A.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc.2019, 141, 12202.  
DOI:10.1021/jacs.9b05261

論文著者の紹介

研究者:David Milstein

研究者の経歴:

1976 Ph.D, Hebrew University of Jerusalem, Israel(Prof.J. Blum)
1977-1978 Posdoc, Colorado State University (Prof. J. K. Stille)
1979-1982 Senior Research Chemist, Central Research and Development Department, DuPont Co.
1983-1986 Group Leader, DuPont Co.
1987-1992 Associate Professor, Department of Organic Chemistry, Weizmann Institute of Science
1993- Full Professor, Department of Organic Chemistry, Weizmann Institute of Science
1996-2005 Head, Department of Organic Chemistry, Weizmann Institute of Science
1996- The Israel Matz Professorial Chair of Organic Chemistry, Weizmann Institute of Science
2000-2017 Founder and Head, Kimmel Center for Molecular Design, Weizmann Institute of Science

研究内容:選択的官能基化の開発、環境調和的な均一性触媒の開発と応用

論文の概要

本反応は、トルエン溶媒中、Mn触媒1を用いてベンジルアルコール2と化学量論量の水素化カリウムおよびアンモニアを150度で反応させることで、アミド3が良好な収率で得られる(図2A)。

オルト位に置換基をもつベンジルアルコールでは収率は中程度に留まるものの(3b)、メトキシ基(3c)およびジメチルアミノ基(3d)を有するベンジルアルコールが本反応に適用できる(図2A)。
用いる塩基の量が重要であり、触媒量の塩基を使用した場合イミン4が主生成物として得られた。

なお、Mn触媒存在下、イミン4を1,4-ジオキサン/水溶媒中反応させても2級アミド5は得られなかった(図2B)。この結果と種々の実験結果から、以下の反応機構が提唱されている(図2C)。まず当量の塩基とアルコールAから、アルコキシドBが生成する。高温、多量アンモニア存在下では、BからAの再生を伴って、カリウムアミドが生成する。次にAがMn触媒と反応し、β–水素脱離を経て対応するアルデヒドとなる。このアルデヒドにカリウムアミドが付加してアミノアルコキシドCを生成する。ここで、Mn触媒がCとβ–水素脱離を起こし、1級アミド塩Dが形成する。最後にアルデヒドとアミド塩DがMn触媒の作用により脱水反応をし、目的の二級アミド塩Eが生成する。本反応機構において、著者らはCおよびその等価体Fが望みの二度目のβ–水素脱離の進行に重要な中間体であると言及している。すなわち、CおよびFの脱水(ヒドロキシ基の脱離)は遅く、副反応経路であるイミン形成が抑制されている。

図2. (A) 基質適用範囲 (B)塩基量の異なる条件下での比較対照実験 (C) 推定反応機構

 

窒素源としてアンモニア、触媒として卑金属のマンガンを用いたこの反応は、安価かつ原子効率の良いアミド合成としての応用が期待できる。

あとがき:議論

本論文の種々の比較対照実験とそこから導かれる結論に関して。
①Scheme 2bではMn触媒1と化学量論量のKHを用いて、ベンジルアルコールとベンジルアミンから目的のアミドが得られている。しかし、この条件にアンモニアガスを加えて行った場合、アミドが微量しか得られなかった(Scheme 3A)。このことからベンジルアミンは中間体ではないと結論づけている。この議論に矛盾を感じる。
②Scheme 2cでMn触媒存在下、イミン4を1,4ジオキサン/水溶媒中反応させても2級アミド5は得られなかったことからイミンは中間体ではないと結論づけている。しかし、本反応では水は最大で1当量しか生成せず、水が大過剰加わっている条件では本脱水素アミド合成反応が進行するかどうかの確認はされていない。「H2O大過剰条件でのイミンの加水分解が早いからアミドが得られなかった」という可能性が排除できないため、イミンが中間体ではないと結論づけるのは時期尚早ではないか。
以上の2点を踏まえると、本論文で提唱されている反応機構以外にも有効な反応機構が存在する可能性が考えられる。
参考文献

  1. Montalbetti, C. A. G. N.; Falque, V. Amide Bond Formation and Peptide Coupling. Tetrahedron2005, 61, 10827DOI: 10.1016/j.tet.2005.08.031
  2. (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct Synthesis of Amides from Alcohols and Amines with Liberation of H2. Science 2007, 317, 790.DOI:1126/science.1145295(b) Kumar, A.; Espinosa-Jalapa, N. A.; Leitus, G.; Diskin-Posner, Y.; Avram, L.; Milstein, D. Direct Synthesis of Amide by Dehydrogenative Coupling of Amines with either Alcohols or Esters: Manganese Pincer Complex as Catalyst. Angew. Chem., Int. Ed. 2017, 56, 14992. DOI: 10.1002/anie.201709180
  3. Zweifel, T.; Naubron, J. V.; Grüetzmacher, H. Catalyzed Dehydrogenative Coupling of Primary Alcohols with Water, Methanol, or Amines. Chem., Int. Ed. 2009, 48, 559. DOI: 10.1002/anie.200804757

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 「フント則を破る」励起一重項と三重項のエネルギーが逆転した発光材…
  2. フッ素をホウ素に変換する触媒 :簡便なPETプローブ合成への応用…
  3. 有機合成化学協会誌3月号:鉄-インジウム錯体・酸化的ハロゲン化反…
  4. 【Q&Aシリーズ❶ 技術者・事業担当者向け】 マイクロ…
  5. 有機アジド(1):歴史と基本的な性質
  6. C-H活性化触媒を用いる(+)-リゾスペルミン酸の収束的合成
  7. ナノスケールの虹が世界を変える
  8. 科学を伝える-サイエンスコミュニケーターのお仕事-梅村綾子さん

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 熊田誠氏死去(京大名誉教授)=有機ケイ素化学の権威
  2. 蛍光と光増感能がコントロールできる有機ビスマス化合物
  3. 新規重水素化触媒反応を開発―医薬品への直接重水素導入を達成―
  4. アフリカの化学ってどうよ?
  5. 模型でわかる【金属錯体型超分子】
  6. チャート式実験器具選択ガイド:スパチュラ・グローブ編
  7. 2011年日本化学会各賞発表-学会賞-
  8. 有機合成化学協会誌2023年4月号:ビニルボロン酸・動的キラル高分子触媒・ホスホニウムイリド・マイクロ波特異効果・モレキュラーシーブ
  9. ゲラニオール
  10. 招福豆ムクナの不思議(6)植物が身を護る化学物資

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP