[スポンサーリンク]

化学者のつぶやき

アンモニアを用いた環境調和型2級アミド合成

[スポンサーリンク]

アンモニアを窒素源として、ベンジルアルコールを用いた脱水素カップリングによる、アミドの合成に成功した。化学量論量の塩基により、イミンではなく選択的に2級アミドを合成できる

アミド合成法

アミドはポリマー、生物活性物質や医薬品合成に広く用いられるため、効率的なアミド合成法開発の波及効果は多岐にわたる。

頻用されるアミド合成法は、縮合剤を用いるカルボン酸とアミンとの脱水縮合だが、この手法では多量の共生成物の排出は避けられない(図1A)[1]

原子効率に優れる手法として、2007年にMilsteinらがピンサー型Ru触媒を用いて、アルコールとアミンの脱水素カップリングによるアミド合成を報告した(図1B)[2]。ピンサー型金属触媒をはじめて脱水素カップリングに用いたことが反応の鍵であった。

この反応が報告されて以降、様々なピンサー型金属触媒を用いたアミドの合成が報告されてきた。2009年には、Grützmacherらがピンサー型Rh触媒を用いてアルコールとアンモニアから一級アミド合成法を開発した(図1C)[3]。しかし、窒素源をアンモニアとした手法はこの反応のみである上に、触媒に貴金属を用いるという課題があった。卑金属を触媒とするアミド化として、Mn触媒によるアミド合成法も知られる(図1B)。しかしアルコールとアミンを用いた合成法であり、窒素源にアンモニアを用いることはできていなかった。
今回、Milsteinらはピンサー型Mn触媒1を用いて、アルコールとアンモニアの脱水素カップリングにより2級アミドを合成することに成功した(図1D)。反応の鍵は、化学量論量の塩基を用いることであった。

図1. (A) 縮合剤を用いたアミド合成 (B) 脱水素カップリングによるアミド合成 (C) NH3を用いた1級アミド合成 (D) 今回の反応

 

 Direct Synthesis of Amides by Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and Ammonia Catalyzed by a Manganese Pincer Complex: Unexpected Crucial Role of Base

Daw, P.; Kumar, A.; Espinosa-Jalapa, N. A.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc.2019, 141, 12202.  
DOI:10.1021/jacs.9b05261

論文著者の紹介

研究者:David Milstein

研究者の経歴:

1976 Ph.D, Hebrew University of Jerusalem, Israel(Prof.J. Blum)
1977-1978 Posdoc, Colorado State University (Prof. J. K. Stille)
1979-1982 Senior Research Chemist, Central Research and Development Department, DuPont Co.
1983-1986 Group Leader, DuPont Co.
1987-1992 Associate Professor, Department of Organic Chemistry, Weizmann Institute of Science
1993- Full Professor, Department of Organic Chemistry, Weizmann Institute of Science
1996-2005 Head, Department of Organic Chemistry, Weizmann Institute of Science
1996- The Israel Matz Professorial Chair of Organic Chemistry, Weizmann Institute of Science
2000-2017 Founder and Head, Kimmel Center for Molecular Design, Weizmann Institute of Science

研究内容:選択的官能基化の開発、環境調和的な均一性触媒の開発と応用

論文の概要

本反応は、トルエン溶媒中、Mn触媒1を用いてベンジルアルコール2と化学量論量の水素化カリウムおよびアンモニアを150度で反応させることで、アミド3が良好な収率で得られる(図2A)。

オルト位に置換基をもつベンジルアルコールでは収率は中程度に留まるものの(3b)、メトキシ基(3c)およびジメチルアミノ基(3d)を有するベンジルアルコールが本反応に適用できる(図2A)。
用いる塩基の量が重要であり、触媒量の塩基を使用した場合イミン4が主生成物として得られた。

なお、Mn触媒存在下、イミン4を1,4-ジオキサン/水溶媒中反応させても2級アミド5は得られなかった(図2B)。この結果と種々の実験結果から、以下の反応機構が提唱されている(図2C)。まず当量の塩基とアルコールAから、アルコキシドBが生成する。高温、多量アンモニア存在下では、BからAの再生を伴って、カリウムアミドが生成する。次にAがMn触媒と反応し、β–水素脱離を経て対応するアルデヒドとなる。このアルデヒドにカリウムアミドが付加してアミノアルコキシドCを生成する。ここで、Mn触媒がCとβ–水素脱離を起こし、1級アミド塩Dが形成する。最後にアルデヒドとアミド塩DがMn触媒の作用により脱水反応をし、目的の二級アミド塩Eが生成する。本反応機構において、著者らはCおよびその等価体Fが望みの二度目のβ–水素脱離の進行に重要な中間体であると言及している。すなわち、CおよびFの脱水(ヒドロキシ基の脱離)は遅く、副反応経路であるイミン形成が抑制されている。

図2. (A) 基質適用範囲 (B)塩基量の異なる条件下での比較対照実験 (C) 推定反応機構

 

窒素源としてアンモニア、触媒として卑金属のマンガンを用いたこの反応は、安価かつ原子効率の良いアミド合成としての応用が期待できる。

あとがき:議論

本論文の種々の比較対照実験とそこから導かれる結論に関して。
①Scheme 2bではMn触媒1と化学量論量のKHを用いて、ベンジルアルコールとベンジルアミンから目的のアミドが得られている。しかし、この条件にアンモニアガスを加えて行った場合、アミドが微量しか得られなかった(Scheme 3A)。このことからベンジルアミンは中間体ではないと結論づけている。この議論に矛盾を感じる。
②Scheme 2cでMn触媒存在下、イミン4を1,4ジオキサン/水溶媒中反応させても2級アミド5は得られなかったことからイミンは中間体ではないと結論づけている。しかし、本反応では水は最大で1当量しか生成せず、水が大過剰加わっている条件では本脱水素アミド合成反応が進行するかどうかの確認はされていない。「H2O大過剰条件でのイミンの加水分解が早いからアミドが得られなかった」という可能性が排除できないため、イミンが中間体ではないと結論づけるのは時期尚早ではないか。
以上の2点を踏まえると、本論文で提唱されている反応機構以外にも有効な反応機構が存在する可能性が考えられる。
参考文献

  1. Montalbetti, C. A. G. N.; Falque, V. Amide Bond Formation and Peptide Coupling. Tetrahedron2005, 61, 10827DOI: 10.1016/j.tet.2005.08.031
  2. (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct Synthesis of Amides from Alcohols and Amines with Liberation of H2. Science 2007, 317, 790.DOI:1126/science.1145295(b) Kumar, A.; Espinosa-Jalapa, N. A.; Leitus, G.; Diskin-Posner, Y.; Avram, L.; Milstein, D. Direct Synthesis of Amide by Dehydrogenative Coupling of Amines with either Alcohols or Esters: Manganese Pincer Complex as Catalyst. Angew. Chem., Int. Ed. 2017, 56, 14992. DOI: 10.1002/anie.201709180
  3. Zweifel, T.; Naubron, J. V.; Grüetzmacher, H. Catalyzed Dehydrogenative Coupling of Primary Alcohols with Water, Methanol, or Amines. Chem., Int. Ed. 2009, 48, 559. DOI: 10.1002/anie.200804757
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ペプチドの精密な「立体ジッパー」構造の人工合成に成功
  2. 特許の基礎知識(1)そもそも「特許」って何?
  3. 電子豊富芳香環に対する触媒的芳香族求核置換反応
  4. 研究室クラウド設立のススメ(経緯編)
  5. Stephacidin Bの全合成と触媒的ヒドロアミノアルキル化…
  6. LSD1阻害をトリガーとした二重機能型抗がん剤の開発
  7. START your chemi-storyー日産化学工業会社説…
  8. ヘテロベンザイン

注目情報

ピックアップ記事

  1. 新型コロナウイルスの化学への影響
  2. 研究者・開発者に必要なマーケティング技術と活用方法【終了】
  3. DABを用いた一級アミノ基の選択的保護および脱保護反応
  4. 吉野彰氏が2021年10月度「私の履歴書」を連載。
  5. アシロイン縮合 Acyloin Condensation
  6. 社会人7年目、先端技術に携わる若き研究者の転職を、 ビジョンマッチングはどう成功に導いたのか。
  7. 化学における特許権侵害訴訟~特許の真価が問われる時~
  8. エコエネルギー 家庭で競争
  9. (–)-Spirochensilide Aの不斉全合成
  10. 有機合成化学協会誌2018年8月号:触媒的不斉全合成・分子ローター型蛍光核酸・インドロキナゾリンアルカロイド・非対称化・アズレン・ヒドラゾン-パラジウム触媒

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP