[スポンサーリンク]

化学者のつぶやき

アンモニアを用いた環境調和型2級アミド合成

[スポンサーリンク]

アンモニアを窒素源として、ベンジルアルコールを用いた脱水素カップリングによる、アミドの合成に成功した。化学量論量の塩基により、イミンではなく選択的に2級アミドを合成できる

アミド合成法

アミドはポリマー、生物活性物質や医薬品合成に広く用いられるため、効率的なアミド合成法開発の波及効果は多岐にわたる。

頻用されるアミド合成法は、縮合剤を用いるカルボン酸とアミンとの脱水縮合だが、この手法では多量の共生成物の排出は避けられない(図1A)[1]

原子効率に優れる手法として、2007年にMilsteinらがピンサー型Ru触媒を用いて、アルコールとアミンの脱水素カップリングによるアミド合成を報告した(図1B)[2]。ピンサー型金属触媒をはじめて脱水素カップリングに用いたことが反応の鍵であった。

この反応が報告されて以降、様々なピンサー型金属触媒を用いたアミドの合成が報告されてきた。2009年には、Grützmacherらがピンサー型Rh触媒を用いてアルコールとアンモニアから一級アミド合成法を開発した(図1C)[3]。しかし、窒素源をアンモニアとした手法はこの反応のみである上に、触媒に貴金属を用いるという課題があった。卑金属を触媒とするアミド化として、Mn触媒によるアミド合成法も知られる(図1B)。しかしアルコールとアミンを用いた合成法であり、窒素源にアンモニアを用いることはできていなかった。
今回、Milsteinらはピンサー型Mn触媒1を用いて、アルコールとアンモニアの脱水素カップリングにより2級アミドを合成することに成功した(図1D)。反応の鍵は、化学量論量の塩基を用いることであった。

図1. (A) 縮合剤を用いたアミド合成 (B) 脱水素カップリングによるアミド合成 (C) NH3を用いた1級アミド合成 (D) 今回の反応

 

 Direct Synthesis of Amides by Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and Ammonia Catalyzed by a Manganese Pincer Complex: Unexpected Crucial Role of Base

Daw, P.; Kumar, A.; Espinosa-Jalapa, N. A.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc.2019, 141, 12202.  
DOI:10.1021/jacs.9b05261

論文著者の紹介

研究者:David Milstein

研究者の経歴:

1976 Ph.D, Hebrew University of Jerusalem, Israel(Prof.J. Blum)
1977-1978 Posdoc, Colorado State University (Prof. J. K. Stille)
1979-1982 Senior Research Chemist, Central Research and Development Department, DuPont Co.
1983-1986 Group Leader, DuPont Co.
1987-1992 Associate Professor, Department of Organic Chemistry, Weizmann Institute of Science
1993- Full Professor, Department of Organic Chemistry, Weizmann Institute of Science
1996-2005 Head, Department of Organic Chemistry, Weizmann Institute of Science
1996- The Israel Matz Professorial Chair of Organic Chemistry, Weizmann Institute of Science
2000-2017 Founder and Head, Kimmel Center for Molecular Design, Weizmann Institute of Science

研究内容:選択的官能基化の開発、環境調和的な均一性触媒の開発と応用

論文の概要

本反応は、トルエン溶媒中、Mn触媒1を用いてベンジルアルコール2と化学量論量の水素化カリウムおよびアンモニアを150度で反応させることで、アミド3が良好な収率で得られる(図2A)。

オルト位に置換基をもつベンジルアルコールでは収率は中程度に留まるものの(3b)、メトキシ基(3c)およびジメチルアミノ基(3d)を有するベンジルアルコールが本反応に適用できる(図2A)。
用いる塩基の量が重要であり、触媒量の塩基を使用した場合イミン4が主生成物として得られた。

なお、Mn触媒存在下、イミン4を1,4-ジオキサン/水溶媒中反応させても2級アミド5は得られなかった(図2B)。この結果と種々の実験結果から、以下の反応機構が提唱されている(図2C)。まず当量の塩基とアルコールAから、アルコキシドBが生成する。高温、多量アンモニア存在下では、BからAの再生を伴って、カリウムアミドが生成する。次にAがMn触媒と反応し、β–水素脱離を経て対応するアルデヒドとなる。このアルデヒドにカリウムアミドが付加してアミノアルコキシドCを生成する。ここで、Mn触媒がCとβ–水素脱離を起こし、1級アミド塩Dが形成する。最後にアルデヒドとアミド塩DがMn触媒の作用により脱水反応をし、目的の二級アミド塩Eが生成する。本反応機構において、著者らはCおよびその等価体Fが望みの二度目のβ–水素脱離の進行に重要な中間体であると言及している。すなわち、CおよびFの脱水(ヒドロキシ基の脱離)は遅く、副反応経路であるイミン形成が抑制されている。

図2. (A) 基質適用範囲 (B)塩基量の異なる条件下での比較対照実験 (C) 推定反応機構

 

窒素源としてアンモニア、触媒として卑金属のマンガンを用いたこの反応は、安価かつ原子効率の良いアミド合成としての応用が期待できる。

あとがき:議論

本論文の種々の比較対照実験とそこから導かれる結論に関して。
①Scheme 2bではMn触媒1と化学量論量のKHを用いて、ベンジルアルコールとベンジルアミンから目的のアミドが得られている。しかし、この条件にアンモニアガスを加えて行った場合、アミドが微量しか得られなかった(Scheme 3A)。このことからベンジルアミンは中間体ではないと結論づけている。この議論に矛盾を感じる。
②Scheme 2cでMn触媒存在下、イミン4を1,4ジオキサン/水溶媒中反応させても2級アミド5は得られなかったことからイミンは中間体ではないと結論づけている。しかし、本反応では水は最大で1当量しか生成せず、水が大過剰加わっている条件では本脱水素アミド合成反応が進行するかどうかの確認はされていない。「H2O大過剰条件でのイミンの加水分解が早いからアミドが得られなかった」という可能性が排除できないため、イミンが中間体ではないと結論づけるのは時期尚早ではないか。
以上の2点を踏まえると、本論文で提唱されている反応機構以外にも有効な反応機構が存在する可能性が考えられる。
参考文献

  1. Montalbetti, C. A. G. N.; Falque, V. Amide Bond Formation and Peptide Coupling. Tetrahedron2005, 61, 10827DOI: 10.1016/j.tet.2005.08.031
  2. (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct Synthesis of Amides from Alcohols and Amines with Liberation of H2. Science 2007, 317, 790.DOI:1126/science.1145295(b) Kumar, A.; Espinosa-Jalapa, N. A.; Leitus, G.; Diskin-Posner, Y.; Avram, L.; Milstein, D. Direct Synthesis of Amide by Dehydrogenative Coupling of Amines with either Alcohols or Esters: Manganese Pincer Complex as Catalyst. Angew. Chem., Int. Ed. 2017, 56, 14992. DOI: 10.1002/anie.201709180
  3. Zweifel, T.; Naubron, J. V.; Grüetzmacher, H. Catalyzed Dehydrogenative Coupling of Primary Alcohols with Water, Methanol, or Amines. Chem., Int. Ed. 2009, 48, 559. DOI: 10.1002/anie.200804757

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【サステナブルなものづくり】 マイクロ波の使い方セミナー 〜実験…
  2. 有合化若手セミナーに行ってきました
  3. X線分析の基礎知識【X線の性質編】
  4. 植物毒素の全合成と細胞死におけるオルガネラの現象発見
  5. ゴールドエクスペリエンスが最長のラダーフェニレンを産み出す
  6. ロピニロールのメディシナルケミストリー -iPS創薬でALS治療…
  7. 化学研究ライフハック: Firefoxアドオンで化学検索をよりス…
  8. ChemDrawの使い方【作図編①:反応スキーム】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 難分解性高分子を分解する画期的アプローチ:側鎖のC-H結合を活性化して主鎖のC-C結合を切る
  2. 天然物の生合成に関わる様々な酵素
  3. 複雑分子を生み出す脱水素型ディールス・アルダー反応
  4. 超小型シリンジ開発 盛岡の企業
  5. ルイ・E. ・ブラス Louis E. Brus
  6. 安藤弘宗 Hiromune Ando
  7. 春季ACSMeetingに行ってきました
  8. 生物発光のスイッチ制御でイメージング
  9. ケムステニュース 化学企業のグローバル・トップ50が発表【2019年版】
  10. ビス[α,α-ビス(トリフルオロメチル)ベンゼンメタノラト]ジフェニルサルファー : Bis[alpha,alpha-bis(trifluoromethyl)benzenemethanolato]diphenylsulfur

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

【速報】2023年ノーベル化学賞は「量子ドットの発見と合成」へ!

2023年のノーベル化学賞は「量子ドットの発見と合成」の業績で、マサチューセッツ工科大学のMoung…

エキモフ, アレクセイ イワノビッチ Екимов, Алексей Иванович

エキモフ, アレクセイ イワノビッチ(Екимов, Алексей Иванович, Alexe…

ルイ・E. ・ブラス Louis E. Brus

ルイ・ユージーン・ブラス (Louis Eugene Brus, 1943年8月10日-, オハイオ…

モウンジ・バウェンディ Moungi G Bawendi

モウンジ・バウェンディ (Moungi G Bawendi 1961年3月15日 パリ生まれ)はアメ…

マテリアルズ・インフォマティクスにおける分子生成の基礎

開催日:2023/10/11 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

はやぶさ2が持ち帰った有機化合物

小惑星リュウグウから始原的な「塩(Salt)」と有機硫黄分子群を発見(9月18日JAMSTECプレス…

Let’s Make Wave , Make World. −マイクロ波で!プロセス革新ワークショップ −

<内容>マイクロ波のプロと次世代プロセスへの転換に向けた勘所を押さえ、未来に向けたイノベーシ…

ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発

第566回のスポットライトリサーチは、京都大学化学研究所 物質創成化学研究系 有機元素化学領域 (山…

韮山反射炉に行ってみた

韮山反射炉は1857年に完成した静岡県伊豆の国市にある国指定の史跡(史跡名勝記念物)で、2015年に…

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP