[スポンサーリンク]

スポットライトリサーチ

徹底的に電子不足化した有機π共役分子 ~高機能n型有機半導体材料の創製を目指して~

[スポンサーリンク]

第319回のスポットライトリサーチは名古屋大学大学院工学研究科忍久保研究室の博士課程1年田島 慶太さんにお願いしました。

忍久保研究室は、

  • 新規有機π電子化合物の創成と物性・機能の探求
  • π共役有機分子の新奇現象の創出と解明
  • 電子材料や医療への応用を目指したπ電子化合物の構造制御と機能開拓
  • 生体機能を模倣した遷移金属錯体触媒の設計と小分子活性化反応の開発

を掲げ、分子の物性や機能を開花させるための研究を行っています。ちょっとした”違い”によって分子は性質が変わります。今回はアンタントレンという分子を対象にして、2つの炭素を窒素に、加えてイミド基を導入してあげることで非常に高い電子受容性を示す分子群を合成することに成功しました。本研究成果はAngewandte Chemie International Edition誌原著論文およびプレスリリースに公開されています。

Acridino[2,1,9,8-klmna]acridine Bisimides: An Electron-Deficient π-System for Robust Radical Anions and n-Type Organic Semiconductors

Tajima, K.; Matsuo, K.; Yamada, H.; Seki, S.; Fukui, N.; Shinokubo, H. Angew. Chem. Int. Ed. 2021, 60, 14060–14067.

DOI: 10.1002/anie.202102708

研究室の主宰者である忍久保教授、また、共同研究者である奈良先端技術科学大学院大学の山田容子教授、京都大学の関修平教授は、今回インタビューした田島さんに関して以下のように述べています。

忍久保:田島君は自分の研究の方向性を自分で定め、それに必要な準備を怠らないという学生さんです。すでに、自分が楽しめる研究の世界をもっているようです。当初は出不精なところがあったのですが、今回の研究では京都や奈良に積極的にでかけ、測定やデバイス作成など普段とは違う実験を行ってくれました。共同研究により、新しい経験を積み、新しい人に出会うことで、一皮むけた感じがします。別の新しい分子も見つけているようで、ますます期待しています。

山田:田島君は、COVID-19下の難しい状況の中、デバイス作製と評価のためにNAISTを訪問してくれました。初めてにも関わらず短期間で技術を習得し、ディスカッションしながら手際良く条件検討するなど、非常に将来が楽しみな頼もしい学生さんです。新しい分子とともに、また訪れてくださるのを楽しみにしています。

:「私たち化学者(科学者)は、いろいろな議論の中で自分のアイデアをまとめて行き、ある時突然、”ひらめいた”と思うことが無上の喜びであったりします。田島君と議論していると、そんな喜びをとても頻繁に感じさせてくれます。多分、周囲の多くの研究者やその卵たちにも同じような感覚を与えているのでしょう。闇実験から出てきたテーマで皆を驚かす、おそらくその瞬間にすごい・うれしいと皆が感じたはずです。実際に実験して物質を作り上げ、それをもって喜びを与える将来の化学者(科学者)になってほしいと切に思っています。」

共同研究先からも大絶賛で、今後が期待される大学院生のようです。それではインタビューを御覧ください。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

電子不足なπ共役分子は、n型有機半導体や有機合成用の光増感剤など、多岐にわたる応用が期待されています。今回の研究では、アンタントレンという電子豊富な分子に対して、電子求引基のイミド基と、電気陰性なイミン型窒素を同時に導入したものに相当する化合物1-4を新たに創出しました。電気化学測定の結果から、本化合物はフェロセン基準で–0.72 Vという、非常に高い電子受容性をもつことがわかりました。これは代表的な電子不足π共役分子のペリレンビスイミド(–1.08 V)やフラーレン(–0.97 V)よりも低い値です。また、化合物1に対してコバルトセンを用いた一電子還元反応を施すことで、対応するラジカルアニオン種の単離に成功しました。一般に、ラジカルアニオンは空気中の酸素によって容易に酸化されます。一方、今回得られた化学種は、空気下で取り扱えるほど高い安定性を示しました。さらに、化合物2-4について有機電界効果トランジスタ素子を作製したところ、大気下で動作するのみならず、n型有機半導体としては高い電子移動度を示しました。特に、化合物2は単結晶状態で0.90 cm2 V–1 s–1という非常に高い電子移動度を示しました。この高い移動度の発現の鍵は、電子不足性によってπ平面間の電子反発が弱められて積層距離が短縮したことと、イミン型窒素原子を介した分子間水素結合による構造の固定化が働いたことによるものと考えています。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

研究テーマの立ち上げの過程に思い入れがあります。実は、この研究テーマはいわゆる”闇実験”から出たものです。私は当初、全く別の分子を標的として研究を進めていました。しかし、トライした合成法では複雑な混合物を与えるのみで、標的分子がなかなか得られませんでした。ところがある日、混合物の中に、わずかに黄緑色の発光を示す化合物が存在することを見つけました。この分子こそが、本研究対象の分子でした。その後は、こっそりと新分子を合成するための条件検討を粘り強く行い、化合物の単離と同定に至ることができました。その成果を報告会で発表したときに、スタッフの方々や学生の皆さんが驚いていたことは今でも印象に残っています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

サンプルの取り扱い方と、高性能なn型有機半導体材料として実証するための実験が特に困難でした。

まず、デバイスとして用いるための試料には、高い純度が求められます。しかしながら、今回の分子の多くは有機溶媒に対する溶解性が非常に低く、精製に苦労しました。最終的には、高沸点溶媒を用いた温度差による再結晶を複数回繰り返すことで、問題を解決しました。他には、実際にデバイスとしての性能を見積もった際に、細かい条件の違いによって性能に差が現れることを体感しました。この問題については、共同研究先の先生方と協力し、細部にわたって条件検討を行うことで、クリアなデータを収集することができました。

Q4. 将来は化学とどう関わっていきたいですか?

化学の発展に貢献できるような成果を生み出し、分野をまたいで他の分野へ広げられるような研究者を目指したいです。そのためには、自身の得意分野を究めるだけでなく、他分野の知識を貪欲に吸収していくことが大切だと感じています。また、これまで培ってきた化学者として観察眼を目一杯生かし、面白いモノを創り出していきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

先述したように、今回の研究は偶然の産物でした。この経験から、自身が感じた小さな変化や違和感に焦点を当ててみることで、新しい景色が見えるようになることもあるのだと感じました。

また、今回の私の研究は、電子不足なπ共役系の創出という観点のもとで進めてきました。今後は更なる電子不足性の追求に向けて、新しい化合物の合成を行なっていきたいと考えていますので、続報をお待ちください。

 

最後に、共同研究でお世話になりました、奈良先端科学技術大学院大学の松尾恭平先生、山田容子先生、ならびに京都大学の関修平先生にはこの場を借りて御礼申し上げます。また、日頃からご指導ご鞭撻してくださる研究室のスタッフの先生方や学生の皆さんに、深く感謝申し上げます。

【研究者の略歴】

名前:田島 慶太
所属:名古屋大学大学院工学研究科 有機・高分子化学専攻 忍久保研究室 博士後期課程1年
研究テーマ:機能性電子不足π共役分子の新規創製

 

関連リンク

忍久保研究室に関するケムステ記事

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 科学は探究心を与え続けてくれるもの:2016 ロレアル–ユネスコ…
  2. 従来のペプチド合成法に替わるクリーンなペプチド合成法の確立を目指…
  3. 私が思う化学史上最大の成果-1
  4. 可視光で働く新しい光触媒を創出 -常識を覆す複合アニオンの新材料…
  5. 超分子カプセル内包型発光性金属錯体の創製
  6. 研究テーマ変更奮闘記 – PhD留学(後編)
  7. 第32回ケムステVシンポ「映える化学・魅せる化学で活躍する若手が…
  8. 光化学スモッグ注意報が発令されました

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 危険物データベース:第6類(酸化性液体)
  2. 2013年ノーベル化学賞は誰の手に?トムソンロイター版
  3. バートン・マクコンビー脱酸素化 Barton-McCombie Deoxygenation
  4. 陽電子放射断層撮影 Positron Emmision Tomography
  5. 第25回 名古屋メダルセミナー The 25th Nagoya Medal of Organic Chemistry
  6. 海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~
  7. 国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)
  8. オンライン授業を受ける/するってどんな感じ? 【アメリカで Ph. D. を取る: コロナ対応の巻】
  9. 分子研オープンキャンパス2023(大学院説明会・体験入学説明会) 参加登録受付中!
  10. 音声読み上げソフトで書類チェック

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

様々な化学分野におけるAIの活用

ENEOS株式会社と株式会社Preferred Networks(PFN)は、2023年1月に石油精…

第8回 学生のためのセミナー(企業の若手研究者との交流会)

有機合成化学協会が学生会員の皆さんに贈る,交流の場有機化学を武器に活躍する,本当の若手研究者を知ろう…

UBEの新TVCM『ストーリーを変える、ケミストリー』篇、放映開始

UBE株式会社は、2023年9月1日より、新TVCM『ストーリーを変える、ケミストリー』篇を関東エリ…

有機合成化学協会誌2023年9月号:大村天然物・ストロファステロール・免疫調節性分子・ニッケル触媒・カチオン性芳香族化合物

有機合成化学協会が発行する有機合成化学協会誌、2023年9月号がオンライン公開されています。…

ペプチドの精密な「立体ジッパー」構造の人工合成に成功

第563回のスポットライトリサーチは、東京大学大学院 工学系研究科応用化学専攻 藤田研究室の恒川 英…

SNS予想で盛り上がれ!2023年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 10月4日(水) 18時45…

ケムステ版・ノーベル化学賞候補者リスト【2023年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

DMFを選択的に検出するセンサー:アミド分子と二次元半導体の特異な相互作用による検出原理を発見

第562回のスポットライトリサーチは、大阪府立大学(現:大阪公立大学)大学院 工学研究科 電子・数物…

イグノーベル賞2023が発表:祝化学賞復活&日本人受賞

今年もノーベル賞とイグノーベル賞の季節がやってきました。今年もケムステではどちらについても全速力で記…

ポンコツ博士の海外奮闘録XXII ~博士,海外学会を視察する~

ポンコツシリーズ国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1話・…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP