[スポンサーリンク]

化学者のつぶやき

タンパク質を華麗に模倣!新規単分子クロリドチャネル

[スポンサーリンク]

クロリドチャネル(Chloride Channel: ClC)タンパク質に匹敵する高いクロリド選択性に加えpH応答性を示す単分子チャネルが開発された。先行研究の単分子チャネルにヒドロキシ基を導入したことが鍵である。

生体イオンチャネルと人工クロリドチャネル

生体において、イオンは細胞の浸透圧や筋細胞と神経細胞の働きに深く関わる。そのため、生物は膜貫通タンパク質である生体イオンチャネルによりイオン濃度を調節している。各種生体イオンチャネルはその構造で特定のイオンを透過するが、中でも生体内に多く存在するクロリド(Cl)の選択的チャネルの果たす役割は大きい(図1A)。代表例にクロリドチャネル(ClC)タンパク質があり、生体内に広く分布し細胞の基本的機能に深く関与することが知られる[1]

クロリドチャネルの研究ツールとしての活用や関連疾患に対する治療法の開発を目指し、クロリドチャネルの機能を模倣した分子(人工クロリドチャネル)が研究されてきた[2]。多数の報告がある中で、クロリドの透過性の向上を狙いアニオン–π相互作用やハロゲン結合を利用する巧みな分子設計が報告されている[3]。しかし、依然として生体イオンチャネルに比べクロリド選択性が低く、ClCタンパク質がもつpH応答性を示すものは少ないという課題が残る[4]

以前筆者らは、末端にカルボン酸部位をもちClCタンパク質構造を模倣した人工クロリドチャネルを報告している(図1C)[5]。しかし、カリウムイオンに対するクロリドの選択性PCl–/PK+ = 1.90は高くなかった。そこで、今回チャネルの中心にヒドロキシ基を導入することで、水素結合によりアニオン選択性が向上した。また、新規クロリドチャネルはpH応答性を示すことも明らかとなった。

図1. (A) クロリドチャネル (B) 人工クロリドチャネルの部分構造とクロリドとの相互作用 (C) 新規クロリドチャネル

 

“An Artificial Single Molecular Channel Showing High Chloride Transport Selectivity  and pH-Responsive Conductance”

Huang, W.-L.; Wang, X.-D.; Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X. Angew. Chem., Int. Ed. 2023, 62, e202302198.

DOI: 10.1002/anie.202302198

論文著者の紹介

研究者 : Qi-Qiang Wang (王其强)

研究者の経歴

1999–2003 B.S., Wuhan University, China 

2003–2008 Ph.D., Institute of Chemistry, Chinese Academy of Sciences, China 

(Prof. Mei-Xiang Wang)

2008–2013 Postdoc, University of Kansas, USA (Prof. Kristin Bowman-James)

2014–2015 Postdoc, University of Amsterdam, The Netherlands (Prof. Joost N. H. Reek)

2015– Professor, Institute of Chemistry, Chinese Academy of Sciences, China

研究内容:アニオン–π相互作用の超分子化学への応用、超分子化合物の合成と物性評価、生体触媒を用いた反応開発、金属錯体の合成と物性評価

研究者 : De-Xian Wang (王德先)

研究者の経歴

1987–1991 B.S., Lanzhou University, China

1997–2003 Ph.D., Hebei University, China

1991–2002 Lecturer, Assistant Professor, Associate Professor, Hebei University, China 

2002–2004 Postdoc, Inha University, Korea

2004– Associate Professor, Professor, Institute of Chemistry, Chinese Academy of Sciences, China

研究内容:アニオン–π相互作用の超分子化学への応用、超分子化合物の合成と物性評価、金属錯体の合成と物性評価

論文の概要

著者らは、ベンゼンジオール2とジクロロトリアジン3の芳香族求核置換反応により大環状分子4を調製し、続く脱保護によりクロリドチャネル1を得た(図2A)[5, 6]

彼らはまず、合成した1がクロリドを透過するか確認した[5, 6]。ハロゲン感受性蛍光色素Lucigeninは、対アニオンが硝酸イオンからクロリドになると消光する。Lucigeninと硝酸ナトリウム溶液で満たされたリポソーム(Liposome)を含む塩化カリウム溶液に1を添加した際、Lucigeninの消光が確認できた(図2B)。これは、1によりクロリドがリポソームの膜を透過したことを示す。

続いて、1のアニオン選択性を調査した[5]。1を導入した平面脂質二重膜(BLM)で隔てた2つのチャンバーを濃度の異なる塩化カリウム水溶液で満たし(図2C左上図)、任意の電圧を印加した際に流れる電流を測定した(図2C下図)。pHの異なる条件で得られた電圧–電流の関係から、アニオン選択性PCl–/PK+および電流の流れやすさ(コンダクタンス: g)を算出した(図2C右上図)。その結果、アニオン選択性は、pH = 6においてPCl–/PK+ = 12.3となりClCタンパク質と遜色ない値となった。この高い選択性は、トリアジンとのアニオン–π相互作用に加え、新たに導入したヒドロキシ基との水素結合によるクロリドの安定化によって達成された(図2C右下図)。さらに、pH上昇に伴いPCl–/PK+とgの値が減少したため、1はClCタンパク質と同様にpH応答性を示すことが明らかとなった。1の末端カルボン酸(pKa ≈ 6)およびヒドロキシ基(pKa ≈ 8.21)のプロトンが脱離しアニオンとなり、クロリドとの間に反発が生じたためと考えられる。詳細な実験結果や他の物性に関しては本文を参照されたい。

図2. (A) 1の合成 (B) Lucigeninを用いた消光実験(論文から引用) (C) BLM測定(論文から引用)および1とクロリドとの相互作用

 

以上、高いクロリド選択性とpH応答性を併せもつ人工イオンチャネルが開発された。1はClCタンパク質と同様の性質を示すことから、医療分野への応用が期待される。

参考文献

  1. (a) Jentsch, T. J. Discovery of CLC Transport Proteins: Cloning, Structure, Function and Pathophysiology.J. Physiol., 2015, 593, 4091–4109. DOI: 1113/JP270043 (b) Jentsch, T. J.; Pusch, M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol. Rev. 2018, 98, 1493–1590. DOI: 10.1152/physrev.00047.2017
  2. (a) Brotherhood, P. R.; Davis, A. P. Steroid-Based Anion Receptors and Transporters. Chem. Soc. Rev. 2010, 39, 3633–3647. DOI: 1039/B926225N (b) Gale, P. A.; Davis, J. T.; Quesada, R. Anion Transport and Supramolecular Medicinal Chemistry. Chem. Soc. Rev. 2017, 46, 2497–2519. DOI: 10.1039/C7CS00159B
  3. (a) Vargas Jentzsch, A.; Matile, S. Transmembrane Halogen-Bonding Cascades. J. Am. Chem. Soc. 2013, 135, 5302–5303. DOI: 1021/ja4013276 (b) Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015, 115, 7118–7195. DOI: 10.1021/cr500674c (c) Gorteau, V.; Bollot, G.; Mareda, J.; Perez-Velasco, A.; Matile, S. Rigid Oligonaphthalenediimide Rods as Transmembrane Anion–π Slides. J. Am. Chem. Soc. 2006, 128, 14788–14789. DOI: 10.1021/ja0665747 (d) Mareda, J.; Matile, S. Anion–π Slides for Transmembrane Transport. Chem. Eur. J. 2009, 15, 28–37. DOI: 10.1002/chem.200801643
  4. (a) Okunola, O. A.; Seganish, J. L.; Salimian, K. J.; Zavalij, P. Y.; Davis, J. T. Membrane-Active Calixarenes: Toward ‘Gating’ Transmembrane Anion Transport. Tetrahedron 2007, 63, 10743–10750. DOI: 1016/j.tet.2007.06.124 (b) Xin, P.; Tan, S.; Wang, Y.; Sun, Y.; Wang, Y.; Xu, Y.; Chen, C.-P. Functionalized Hydrazide Macrocycle Ion Channels Showing pH-Sensitive Ion Selectivities. Chem. Commun. 2017, 53, 625–628. DOI: 10.1039/C6CC08943G (c) Zheng, S.; Jiang, J.; Lee, A.; Barboiu, M. A Voltage‐Responsive Synthetic Cl-Channel Regulated by pH. Angew. Chem., Int. Ed. 2020, 59, 18920–18926. DOI: 10.1002/anie.202008393
  5. Huang, W.-L.; Wang, X.-D.; Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X. Artificial Chloride-Selective Channel: Shape and Function Mimic of the ClC Channel Selective Pore. J. Am. Chem. Soc. 2020, 142, 13273–13277. DOI: 1021/jacs.0c02881
  6. (a) Wang, X.-D.; Li, S.; Ao, Y.-F.; Wang, Q.-Q.; Huang, Z.-T.; Wang, D.-X. Oxacalix[2]arene[2]triazine Based Ion-Pair Transporters. Org. Biomol. Chem. 2016, 14, 330–334. DOI: 1039/C5OB02291F (b) Huang, W.-L.; Wang, X.-D.; Li, S.; Zhang, R.; Ao, Y.-F.; Tang, J.; Wang, Q.-Q.; Wang, D.-X. Anion Transporters Based on Noncovalent Balance Including Anion–π, Hydrogen, and Halogen Bonding. J. Org. Chem. 2019, 84, 8859–8869. DOI: 10.1021/acs.joc.9b00561
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【四国化成ホールディングス】新卒採用情報(2027卒)
  2. ダン・シェヒトマン博士の講演を聞いてきました。
  3. マクマリーを超えてゆけ!”カルボニルクロスメタセシス反応”
  4. 日本の化学産業を支える静岡県
  5. オキソニウムカチオンを飼いならす
  6. 溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不…
  7. プロドラッグって
  8. 【Vol.1】研究室ってどんな設備があるの? 〜ロータリーエバポ…

注目情報

ピックアップ記事

  1. 既存の農薬で乾燥耐性のある植物を育てる
  2. 2011年人気記事ランキング
  3. 第20回次世代を担う有機化学シンポジウム
  4. 有機分子触媒ーChemical Times特集より
  5. 液相における粒子間水素移動によって加速されるアルカンとベンゼンの脱水素カップリング反応
  6. 第13回 次世代につながる新たな「知」を創造するー相田卓三教授
  7. フッ素をホウ素に変換する触媒 :簡便なPETプローブ合成への応用
  8. ヤマハ発動機、サプリメントメーカーなど向けにアスタキサンチンの原料を供給するビジネスを開始
  9. 新人化学者の失敗ランキング
  10. ヒト遺伝子の ヒット・ランキング

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP